cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296465 Expansion of e.g.f. arctanh(arctanh(x)) (odd powers only).

Original entry on oeis.org

1, 4, 88, 4688, 459520, 71876352, 16428530688, 5167215464448, 2140879726411776, 1130276555155243008, 740796870212763254784, 590192778209307913617408, 561748717440430309770264576, 629564244208933873601143111680, 820602153197407426121272991416320, 1230877720962045060728502509025361920
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 13 2017

Keywords

Examples

			arctanh(arctanh(x)) = x/1! + 4*x^3/3! + 88*x^5/5! + 4688*x^7/7! + 459520*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTanh[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 16; Table[(CoefficientList[Series[(Log[2 - Log[1 - x] + Log[1 + x]] - Log[2 + Log[1 - x] - Log[1 + x]])/2, {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: arctan(arctan(x)) (odd powers only, absolute values).
E.g.f.: (log(2 - log(1 - x) + log(1 + x)) - log(2 + log(1 - x) - log(1 + x)))/2 (odd powers only).
a(n) ~ (2*n)! * ((exp(2) + 1)/(exp(2) - 1))^(2*n+1). - Vaclav Kotesovec, Dec 13 2017