cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A296493 Decimal expansion of ratio-sum for A296555; see Comments.

Original entry on oeis.org

5, 2, 0, 4, 0, 9, 1, 6, 4, 9, 3, 1, 3, 2, 5, 1, 6, 1, 1, 1, 3, 0, 1, 8, 7, 1, 1, 5, 5, 5, 8, 4, 1, 3, 0, 5, 0, 1, 9, 4, 0, 0, 4, 2, 1, 8, 2, 3, 6, 3, 9, 1, 9, 9, 2, 8, 1, 0, 8, 8, 9, 1, 5, 6, 5, 1, 1, 2, 1, 7, 2, 8, 6, 1, 3, 8, 5, 5, 7, 5, 0, 7, 2, 4, 7, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296555, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			5.204091649313251611130187115558413050194...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296555 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296493 *)

A296491 Decimal expansion of ratio-sum for A294170; see Comments.

Original entry on oeis.org

6, 3, 5, 8, 7, 1, 3, 0, 2, 6, 9, 8, 4, 2, 9, 9, 3, 5, 4, 5, 4, 1, 4, 7, 7, 9, 6, 8, 8, 9, 0, 6, 0, 5, 5, 0, 4, 3, 0, 2, 3, 3, 0, 8, 6, 8, 8, 9, 4, 5, 7, 0, 7, 3, 2, 5, 1, 6, 1, 3, 3, 3, 0, 1, 0, 1, 5, 5, 4, 3, 0, 8, 3, 2, 4, 6, 4, 3, 7, 3, 6, 8, 1, 7, 5, 9
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294170, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			6.358713026984299354541477968890605504302...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n;
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A294170 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296491 *)

A296492 Decimal expansion of limiting power-ratio for A294170; see Comments.

Original entry on oeis.org

1, 1, 2, 2, 0, 7, 1, 2, 9, 4, 7, 8, 7, 2, 0, 1, 9, 1, 3, 1, 3, 5, 6, 3, 9, 9, 3, 2, 1, 2, 0, 7, 4, 4, 8, 2, 2, 3, 5, 2, 3, 0, 1, 4, 9, 2, 6, 1, 9, 0, 4, 2, 5, 0, 7, 7, 3, 3, 5, 9, 0, 7, 6, 1, 3, 8, 9, 6, 1, 1, 3, 4, 2, 2, 3, 5, 4, 8, 8, 0, 1, 0, 7, 9, 7, 0
Offset: 2

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294170, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			limiting power-ratio = 11.22071294787201913135639932120744822352...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n;
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A294170 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120]   (* A296492 *)

A296496 Decimal expansion of limiting power-ratio for A294414; see Comments.

Original entry on oeis.org

8, 8, 1, 4, 1, 0, 4, 6, 3, 2, 2, 0, 2, 5, 6, 5, 5, 2, 7, 9, 2, 5, 1, 8, 8, 3, 2, 2, 5, 8, 5, 4, 1, 2, 6, 7, 8, 5, 0, 8, 3, 6, 4, 9, 7, 9, 6, 8, 7, 2, 7, 4, 8, 4, 8, 8, 8, 3, 0, 9, 3, 6, 0, 3, 5, 4, 6, 5, 5, 5, 7, 7, 8, 9, 9, 6, 6, 4, 4, 2, 8, 3, 9, 0, 5, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294414, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			limiting power-ratio = 8.814104632202565527925188322585412678508...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294414 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120]   (* A296496 *)

A296565 Decimal expansion of ratio-sum for A294556; see Comments.

Original entry on oeis.org

4, 7, 8, 1, 3, 4, 8, 4, 4, 1, 2, 4, 0, 6, 4, 3, 6, 4, 5, 8, 9, 3, 8, 2, 9, 1, 3, 5, 4, 7, 7, 0, 9, 0, 1, 8, 6, 6, 8, 7, 2, 1, 4, 7, 9, 3, 7, 6, 7, 3, 2, 4, 1, 6, 6, 0, 0, 0, 5, 1, 4, 0, 7, 0, 5, 2, 7, 9, 6, 3, 9, 7, 7, 7, 7, 7, 5, 5, 3, 8, 3, 8, 3, 1, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294556, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			4.781348441240643645893829135477090186687...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294556 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296565 *)

A296566 Decimal expansion of limiting power-ratio for A294556; see Comments.

Original entry on oeis.org

9, 0, 6, 5, 4, 5, 0, 2, 2, 6, 7, 3, 2, 3, 3, 2, 9, 2, 8, 9, 8, 9, 9, 7, 5, 9, 9, 2, 6, 2, 6, 5, 1, 5, 9, 4, 6, 1, 1, 0, 3, 9, 2, 9, 9, 7, 0, 4, 9, 3, 2, 5, 4, 2, 7, 2, 7, 0, 5, 6, 1, 1, 3, 1, 4, 2, 6, 8, 9, 2, 5, 1, 9, 5, 2, 2, 2, 6, 6, 4, 7, 1, 0, 5, 9, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A294556, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			limiting power-ratio = 9.065450226732332928989975992626515946110...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294556 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120]   (* A296566 *)

A296567 Decimal expansion of ratio-sum for A294557; see Comments.

Original entry on oeis.org

2, 5, 7, 4, 4, 0, 8, 8, 8, 8, 0, 8, 2, 8, 3, 1, 2, 7, 2, 2, 8, 3, 7, 4, 1, 4, 2, 9, 6, 1, 9, 1, 8, 4, 7, 7, 2, 6, 6, 1, 4, 3, 0, 6, 1, 4, 8, 8, 5, 1, 5, 4, 4, 4, 2, 3, 2, 7, 1, 0, 1, 7, 1, 6, 2, 6, 4, 2, 0, 0, 4, 7, 8, 5, 2, 3, 5, 8, 5, 6, 7, 8, 8, 8, 0, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294557, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			2.574408888082831272283741429619184772661...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294557 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296567 *)

A296568 Decimal expansion of limiting power-ratio for A294557; see Comments.

Original entry on oeis.org

3, 6, 8, 4, 1, 4, 0, 9, 6, 3, 5, 0, 7, 1, 4, 3, 0, 4, 8, 9, 3, 4, 9, 9, 8, 7, 0, 9, 4, 3, 3, 9, 8, 3, 2, 1, 8, 5, 0, 7, 1, 3, 4, 7, 6, 0, 3, 4, 5, 1, 0, 3, 4, 9, 8, 0, 8, 8, 6, 8, 7, 6, 5, 9, 1, 0, 0, 0, 8, 3, 6, 4, 2, 0, 6, 9, 0, 2, 9, 5, 4, 8, 8, 5, 7, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A294557, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			limiting power-ratio = 3.684140963507143048934998709433983218507...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294557 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120]   (* A296568 *)

A296569 Decimal expansion of ratio-sum for A294558; see Comments.

Original entry on oeis.org

2, 8, 2, 0, 3, 3, 9, 6, 1, 8, 7, 5, 3, 5, 4, 3, 6, 8, 9, 2, 9, 9, 5, 5, 5, 3, 2, 9, 1, 4, 8, 4, 4, 1, 2, 8, 1, 5, 6, 5, 8, 1, 5, 4, 6, 0, 9, 6, 8, 6, 1, 9, 4, 5, 8, 1, 5, 2, 2, 3, 4, 1, 8, 9, 1, 7, 9, 3, 7, 0, 9, 4, 1, 0, 7, 7, 7, 0, 4, 6, 2, 0, 8, 9, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 06 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A294558, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			ratio-sum = 2.820339618753543689299555329148441281565...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294558 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296569 *)

A296570 Decimal expansion of limiting power-ratio for A294558; see Comments.

Original entry on oeis.org

4, 0, 9, 0, 3, 7, 2, 6, 6, 9, 7, 6, 7, 6, 0, 7, 8, 3, 9, 0, 9, 7, 9, 0, 9, 0, 1, 2, 7, 4, 5, 9, 5, 6, 5, 0, 1, 9, 4, 2, 5, 4, 5, 6, 6, 2, 3, 2, 1, 8, 6, 8, 0, 7, 8, 1, 2, 1, 0, 8, 9, 7, 5, 6, 5, 4, 9, 6, 7, 0, 3, 7, 7, 2, 7, 0, 0, 1, 0, 2, 0, 2, 7, 8, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Jan 07 2018

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A294558, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See the guide at A296469 for related sequences.

Examples

			limiting power-ratio = 4.090372669767607839097909012745956501942...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
    j = 1; While[j < 13, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A294558 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120]   (* A296570 *)
Showing 1-10 of 43 results. Next