A296515 Number of edges in a maximal planar graph with n vertices.
0, 0, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174
Offset: 0
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Allan Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 4 (2012), 659-676.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Dawei He, Yan Wang, and Xingxing Yu, The Kelmans-Seymour conjecture I, arXiv:1511.05020 [math.CO], 2015.
- D. R. Lick and A. T. White, k-degenerate graphs, Canad. J. Math. 22 (1970), 1082-1096.
- Mathematics Stack Exchange, You dig a hole in Minecraft straight down n blocks, how many blocks must you dig to get out?
- K. Stephenson, Circle Packing: A Mathematical Tale, Notices Amer. Math. Soc. 50 (2003).
- Squid Tamar-Mattis, Planar Graphs and Wagner's and Kuratowski's Theorems, REU (2016).
- Eric Weisstein's World of Mathematics, Kuratowski Reduction Theorem, Polyhedral Graph
- David R. Wood, A Simple Proof of the Fary-Wagner Theorem, arXiv:cs/0505047 [math.CO], 2005.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
CoefficientList[Series[(x^2 (1 + x + x^2))/(x - 1)^2, {x, 0, 60}], x] (* or *) LinearRecurrence[{2, -1}, {0, 0, 1, 3}, 60] (* Robert G. Wilson v, Mar 04 2018 *)
Formula
a(n) = floor(6/2^n) + 3n - 6 (see comments section of A008486).
G.f.: x^2 + 3*x^3/(x - 1)^2. - R. J. Mathar, Apr 14 2018
E.g.f.: 6 + x*(x + 6)/2 + 3*exp(x)*(x - 2). - Stefano Spezia, Feb 13 2023
a(n) = 3*(n - 2) for n >= 3. - Max R Anderson, Oct 19 2023
Comments