cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296531 Number of non-averaging permutations of [n] with first element ceiling(n/2).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 13, 32, 51, 76, 161, 386, 903, 2280, 5018, 12828, 19720, 27656, 48788, 100120, 220686, 537208, 1258242, 3123166, 7056165, 17189752, 35968308, 82137764, 189847917, 509880208, 1322092262, 3807727932, 5678509066, 7721623440, 13293899416, 23650787296
Offset: 0

Views

Author

Alois P. Heinz, Dec 14 2017

Keywords

Comments

A non-averaging permutation avoids any 3-term arithmetic progression.
a(0) = 1 by convention.

Examples

			a(5) = 6: 31254, 31524, 31542, 35124, 35142, 35412.
a(6) = 13: 312564, 315264, 315426, 315462, 315624, 351264, 351426, 351462, 351624, 354126, 354162, 354612, 356124.
		

Crossrefs

Programs

  • Maple
    b:= proc(s) option remember; local n, r, ok, i, j, k;
          if nops(s) = 1 then 1
        else n, r:= max(s), 0;
             for j in s minus {n} do ok, i, k:= true, j-1, j+1;
               while ok and i>=0 and k b({$0..n} minus {ceil(n/2)-1}):
    seq(a(n), n=0..25);
  • Mathematica
    b[s_] := b[s] = Module[{n = Max[s], r = 0, ok, i, j, k}, If[Length[s] == 1, 1, Do[{ok, i, k} = {True, j - 1, j + 1}; While[ok && i >= 0 && k < n, {ok, i, k} = {FreeQ[s, i] ~Xor~ MemberQ[s, k], i - 1, k + 1}]; r = r + If[ok, b[s ~Complement~ {j}], 0], {j, s ~Complement~ {n}}]; r]];
    a[n_] := b[Complement[Range[0, n], {Ceiling[n/2] - 1}]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Formula

a(n) = A296529(n,ceiling(n/2)).