A296533 Number of nonequivalent noncrossing trees with n edges up to rotation and reflection.
1, 1, 1, 3, 7, 28, 108, 507, 2431, 12441, 65169, 351156, 1926372, 10746856, 60762760, 347664603, 2009690895, 11723160835, 68937782355, 408323575275, 2434289046255, 14598013278960, 88011196469040, 533216762488020, 3245004785069892, 19829769013792908
Offset: 0
Keywords
Examples
Case n=3: o---o o---o o---o | | \ \ o---o o o o---o In total there are 3 distinct noncrossing trees up to rotation and reflection.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Bernold Fiedler, Real-time blow-up and connection graphs of rational vector fields on the Riemann sphere, arXiv:2504.20503 [math.DS], 2025. See p. 24.
- Marc Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
Programs
-
Mathematica
a[n_] := (If[OddQ[n], 3*Binomial[(1/2)*(3*n - 1), (n - 1)/2], Binomial[3*n/2, n/2]] + Binomial[3*n, n]/(2*n + 1))/(2*(n + 1)); Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
-
PARI
a(n)={(binomial(3*n, n)/(2*n+1) + if(n%2, 3*binomial((3*n-1)/2, (n-1)/2), binomial(3*n/2, n/2)))/(2*(n+1))}
Comments