cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296533 Number of nonequivalent noncrossing trees with n edges up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 3, 7, 28, 108, 507, 2431, 12441, 65169, 351156, 1926372, 10746856, 60762760, 347664603, 2009690895, 11723160835, 68937782355, 408323575275, 2434289046255, 14598013278960, 88011196469040, 533216762488020, 3245004785069892, 19829769013792908
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2017

Keywords

Comments

The number of all noncrossing trees with n edges is given by A001764.
The number of nodes will be n + 1.

Examples

			Case n=3:
   o---o   o---o   o---o
   |       | \       \
   o---o   o   o   o---o
In total there are 3 distinct noncrossing trees up to rotation and reflection.
		

Crossrefs

Cf. A001764, A005034, A006013, A296532 (up to rotation only).

Programs

  • Mathematica
    a[n_] := (If[OddQ[n], 3*Binomial[(1/2)*(3*n - 1), (n - 1)/2], Binomial[3*n/2, n/2]] + Binomial[3*n, n]/(2*n + 1))/(2*(n + 1));
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
  • PARI
    a(n)={(binomial(3*n, n)/(2*n+1) + if(n%2, 3*binomial((3*n-1)/2, (n-1)/2),  binomial(3*n/2, n/2)))/(2*(n+1))}

Formula

a(2n) = (A296532(2n) + A001764(n))/2, a(2n-1) = (A296532(2n-1) + A006013(n-1))/2.
a(2n) = A005034(2n).