A296564 Decimal expansion of lim_{k->infinity} (1/k)*Sum_{i=1..k} A293630(i).
1, 2, 7, 5, 2, 6, 1, 8, 4, 2, 0, 9, 1, 1, 7, 2, 1, 3, 5, 9, 2, 8, 4, 7, 7, 2, 0, 4, 7, 8, 0, 1, 5, 1, 5, 1, 4, 9, 3, 4, 7, 6, 0, 0, 3, 7, 1, 0, 7, 4, 9, 0, 7, 5, 4, 2, 7, 6, 0, 2, 6, 3, 7, 6, 4, 9, 3, 5, 5, 3, 7, 1, 6, 7, 4, 1, 8, 5, 8, 7, 6, 2, 1, 9, 0, 0, 4
Offset: 1
Examples
Equals 1.2752618420911721359284772047801515149347600371... After generating k steps of A293630: k = 0: [1, 2]; 1.500000000000... k = 1: [1, 2, 1, 1]; 1.250000000000... k = 2: [1, 2, 1, 1, 1, 2, 1]; 1.285714285714... k = 3: [1, 2, 1, 1, 1, 2, ...]; 1.307692307692... k = 4: [1, 2, 1, 1, 1, 2, ...]; 1.270270270270... k = 5: [1, 2, 1, 1, 1, 2, ...]; 1.273972602739... k = 6: [1, 2, 1, 1, 1, 2, ...]; 1.275862068965... ... k = infinity: [1, 2, 1, 1, 1, 2, ...]; 1.275261842091...
Links
- Iain Fox, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A293630.
Programs
-
PARI
gen(build) = { my(S = [1, 2], n = 2, t = 3, L, nPrev, E); print(S); print(1.0*t/n); for(j = 1, build, L = S[#S]; n = n*(1+L)-L; t = t*(1+L)-L^2; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i]))); print(S); print(1.0*t/n)); E = S; for(j = build + 1, build + #E, L = E[#E+1-(j-build)]; n = n*(1+L)-L; t = t*(1+L)-L^2; print(1.0*t/n)); } \\ (gradually increase build to get more precise answers) Iain Fox, Dec 23 2017 with help of Jon E. Schoenfield
Comments