cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A293630 "Look to the left" sequence starting with (1, 2): when the sequence has n terms, extend it by appending a(n) copies of a(1..n-1).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2017

Keywords

Comments

Stage 1: last term of 1,2 is 2 hence we add 2 copies of the block to the left of the last term (here 1) giving 1,2,1,1.
Stage 2: last term of 1,2,1,1 is 1 hence we add one copy of the block to the left of the last term (here 1,2,1) giving 1,2,1,1,1,2,1.
Stage 3: last term of 1,2,1,1,1,2,1 is 1 hence we add one copy of the block to the left of the last term (here 1,2,1,1,1,2) giving 1,2,1,1,1,2,1,1,2,1,1,1,2.
Iterate the process.

Crossrefs

"Look to the left" sequences: A322423 (seed 1,2,3), A322424 (seed 1,2,3,4), A322425 (seed 1,2,3,4,5).

Programs

  • Mathematica
    f[s_List] := Block[{a = Flatten[s][[-1]], b = Most@ s}, s = Join[s, Flatten@ Table[b, {a}]]]; Nest[f, {1, 2}, 6] (* Robert G. Wilson v, Dec 23 2017 *)
  • PARI
    v=[1,2];for(n=1,10,l=length(v);w=vector(l-1,i,v[i]);v=concat(v,if(v[l]-1,concat(w,w),w)));a(n)=v[n];

Formula

It seems that lim_{n->infinity} (a(1) + a(2) + ... + a(n))/n = 1.27526... (see link and A296564).
Because of the previous statement, it seems that the ratio of 2s to 1s in this sequence is 1:2.6329... (see A297927). - Iain Fox, Oct 15 2017

Extensions

Self-contained name from M. F. Hasler, Dec 10 2018

A291481 Number of terms of A293630 at stage n.

Original entry on oeis.org

2, 4, 7, 13, 37, 73, 145, 289, 865, 1729, 3457, 10369, 20737, 41473, 82945, 248833, 497665, 995329, 1990657, 3981313, 11943937, 23887873, 47775745, 143327233, 286654465, 573308929, 1146617857, 3439853569, 6879707137, 20639121409, 41278242817, 82556485633
Offset: 0

Views

Author

Benoit Cloitre, Oct 15 2017

Keywords

Comments

limsup a(n+1)/a(n) = 3, liminf a(n+1)/a(n) = 2 (n->oo). It seems that lim_{n->oo} a(n)^(1/n) = C with C > 2.
Limit_{n->oo} a(n)^(1/n) = 2.236151... (see A297890). - Jon E. Schoenfield, Dec 23 2017
The previous limit is also equal to 2^(2 - d) * 3^(d - 1), where d = 1.275261... (see A296564). - Iain Fox, Dec 24 2017

Examples

			A293630 at stage n:
  n = 0: [1, 2];                                      2 terms
  n = 1: [1, 2, 1, 1];                                4 terms
  n = 2: [1, 2, 1, 1, 1, 2, 1];                       7 terms
  n = 3: [1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2];    13 terms
  n = 4: [1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, ...];  37 terms
   ...
		

Crossrefs

Programs

  • Mathematica
    Length /@ NestList[Join[#, Join @@ ConstantArray[Most[#], Last[#]]] &, {1, 2}, 24] (* Michael De Vlieger, Jan 21 2018 *)
  • PARI
    v=[1,2];for(n=1,17,l=length(v);w=vector(l-1,i,v[i]);v=concat(v,if(v[l]-1,concat(w,w),w));print1(length(v),","));
    
  • PARI
    lista(nn) = {
    my(S = [1, 2], n = 2, L, nPrev, E);
    print1("2, ");
    for(j = 1, nn, L = S[#S]; n = n*(1+L)-L; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i]))); print1(n, ", "));
    E = S;
    for(j = nn + 1, nn + #E, L = E[#E+1-(j-nn)]; n = n*(1+L)-L; print1(n, ", "))
    } \\ Iain Fox, Jan 21 2018
    
  • Python
    a, z = [1, 2], [2]
    while z[-1]<1000:
        a += a[:-1]*a[-1]
        z.append(len(a))
    for i in range(100):
        z.append((z[-1]-1)*(a.pop()+1)+1)
    print(z)
    # Andrey Zabolotskiy, Oct 15 2017

Formula

From Iain Fox, Jan 21 2018: (Start)
a(n) = (1 + A293630(a(n-1)))*a(n-1) - A293630(a(n-1)).
a(n) ~ c^n, where c = 2.236151... (see comments or A297890).
(End)

Extensions

More terms from Andrey Zabolotskiy, Oct 15 2017

A297890 Decimal expansion of lim_{k->infinity} (A291481(k)^(1/k)).

Original entry on oeis.org

2, 2, 3, 6, 1, 5, 1, 3, 7, 7, 4, 6, 8, 7, 4, 9, 0, 3, 9, 6, 6, 2, 7, 7, 8, 4, 0, 6, 6, 1, 2, 0, 4, 4, 0, 7, 3, 9, 1, 1, 4, 6, 4, 9, 9, 2, 4, 0, 2, 3, 9, 5, 7, 5, 4, 6, 3, 2, 1, 2, 5, 5, 5, 2, 6, 6, 5, 7, 9, 7, 4, 3, 1, 9, 3, 6, 4, 0, 2, 8, 6, 2, 6, 9, 8, 1, 0
Offset: 1

Views

Author

Iain Fox, Jan 07 2018

Keywords

Comments

Equals 2^(2 - d) * 3^(d - 1), where d = lim_{k->infinity} (1/k)*Sum_{i=1..k} A293630(i) = 1.275261... (see A296564).
See comments from Jon E. Schoenfield on A296564 for explanation of PARI program.
Is this number transcendental?

Examples

			Equals 2.2361513774687490396627784066120440739114649924...
Values evaluated with A291481(k):
  k = 1: 4^(1/1)                 = 4
  k = 2: 7^(1/2)                 = 2.645751311064590590...
  k = 3: 13^(1/3)                = 2.351334687720757489...
  k = 4: 37^(1/4)                = 2.466325714559660444...
  k = 5: 73^(1/5)                = 2.358655818240735626...
  k = 6: 145^(1/6)               = 2.292070651723655173...
  ...
  k = infinity: A291481(k)^(1/k) = 2.236151377468749039...
		

Crossrefs

Programs

  • PARI
    gen(build) = {
    my(S = [1, 2], n = 2, t = 3, L, nPrev, E);
    for(j = 1, build, L = S[#S]; n = n*(1+L)-L; t = t*(1+L)-L^2; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i]))));
    E = S;
    for(j = build + 1, build + #E, L = E[#E+1-(j-build)]; n = n*(1+L)-L; t = t*(1+L)-L^2);
    return(2^(2 - t/n)*3^(t/n - 1))
    } \\ (gradually increase build to get more precise answers)

A297927 Decimal expansion of ratio of number of 1's to number of 2's in A293630.

Original entry on oeis.org

2, 6, 3, 2, 9, 0, 4, 5, 5, 5, 1, 7, 9, 0, 6, 5, 9, 4, 5, 7, 9, 8, 7, 2, 8, 5, 5, 6, 7, 5, 3, 5, 9, 7, 4, 5, 7, 1, 1, 5, 5, 7, 0, 6, 2, 9, 0, 9, 8, 6, 4, 2, 3, 8, 0, 2, 3, 2, 2, 2, 0, 3, 4, 7, 4, 9, 3, 2, 5, 9, 4, 7, 2, 2, 1, 3, 0, 6, 9, 1, 2, 1, 3, 5, 6, 1, 9
Offset: 1

Views

Author

Iain Fox, Jan 08 2018

Keywords

Comments

Equals (2 - d)/(d - 1), where d = lim_{k->infinity} (1/k)*Sum_{i=1..k} A293630(i) = 1.275261... (see A296564).
See comments from Jon E. Schoenfield on A296564 for explanation of PARI program.
Is this number transcendental?

Examples

			Equals 2.6329045551790659457987285567535974571155706290...
After generating k steps of A293630:
  k = 0:        [1, 2];                  1
  k = 1:        [1, 2, 1, 1];            3
  k = 2:        [1, 2, 1, 1, 1, 2, 1];   2.5
  k = 3:        [1, 2, 1, 1, 1, 2, ...]; 2.25
  k = 4:        [1, 2, 1, 1, 1, 2, ...]; 2.7
  k = 5:        [1, 2, 1, 1, 1, 2, ...]; 2.65
  k = 6:        [1, 2, 1, 1, 1, 2, ...]; 2.625
  ...
  k = infinity: [1, 2, 1, 1, 1, 2, ...]; 2.632904555179...
		

Crossrefs

Programs

  • PARI
    gen(build) = {
    my(S = [1, 2], n = 2, t = 3, L, nPrev, E);
    for(j = 1, build, L = S[#S]; n = n*(1+L)-L; t = t*(1+L)-L^2; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i]))));
    E = S;
    for(j = build + 1, build + #E, L = E[#E+1-(j-build)]; n = n*(1+L)-L; t = t*(1+L)-L^2);
    return(1.0*(2 - t/n)/(t/n - 1))
    } \\ (gradually increase build to get more precise answers)

Extensions

Terms after a(3) corrected by Iain Fox, Jan 16 2018

A298590 Sum of terms of A293630 after generating the sequence for n steps (see comments).

Original entry on oeis.org

3, 5, 9, 17, 47, 93, 185, 369, 1103, 2205, 4409, 13223, 26445, 52889, 105777, 317327, 634653, 1269305, 2538609, 5077217, 15231647, 30463293, 60926585, 182779751, 365559501, 731119001, 1462238001, 4386713999, 8773427997, 26320283987, 52640567973, 105281135945
Offset: 0

Views

Author

Iain Fox, Jan 22 2018

Keywords

Comments

A293630, without generating it, starts as 1, 2. After 1 step, the block to the left is repeated twice and results in 1, 2, 1, 1. Generating a second step gives 1, 2, 1, 1, 1, 2, 1. This continues and a(n) is the sum of the terms at the n-th step.
A291481(n) < a(n) < 2*A291481(n).
Lim_{k->infinity} a(k)/A291481(k) = 1.275261... (see A296564).
Lim_{k->infinity} a(k)^(1/k) = 2.236151... (see A297890).

Examples

			A293630 generated n times.
  n = 0: [1, 2];                   a(0) = 1 + 2 = 3.
  n = 1: [1, 2, 1, 1];             a(1) = 1 + 2 + 1 + 1 = 5.
  n = 2: [1, 2, 1, 1, 1, 2, 1];    a(2) = 1 + 2 + 1 + 1 + 1 + 2 + 1 = 9.
  n = 3: [1, 2, 1, 1, 1, 2, ...];  a(2) = 1 + 2 + 1 + 1 + 1 + 2 + ... = 17.
   ...
		

Crossrefs

Programs

  • PARI
    lista(nn) = {
    my(S = [1, 2], t = 3, L, nPrev, E);
    print1("3, ");
    for(j = 1, nn, L = S[#S]; t = t*(1+L)-L^2; nPrev = #S; for(r = 1, L, for(i = 1, nPrev-1, S = concat(S, S[i]))); print1(t, ", "));
    E = S;
    for(j = nn + 1, nn + #E, L = E[#E+1-(j-nn)]; t = t*(1+L)-L^2; print1(t, ", "));
    }

Formula

a(n) = Sum_{k=1..A291481(n)} A293630(k).
a(n) = (1 + A293630(A291481(n-1)))*a(n-1) - A293630(A291481(n-1))^2.
a(n) ~ d*A291481(n), where d = 1.275261... (see A296564).
a(n) = A298606(A291481(n)).

A298606 Partial sums of A293630.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

Iain Fox, Jan 22 2018

Keywords

Comments

a(n) is n plus the number of 2's in A293630 on the interval 1..n.

Examples

			A293630 begins 1, 2, 1, 1, 1, 2, 1, 1, 2, ... so:
a(1) = 1.
a(2) = 1 + 2 = 3.
a(3) = 1 + 2 + 1 = 4.
a(4) = 1 + 2 + 1 + 1 = 5.
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Nest[Join @@ {#, Join @@ ConstantArray[Most@ #, Last@ #]} &, {1, 2}, 5] (* Michael De Vlieger, Jan 22 2018 *)
  • PARI
    lista(nn) = my(v=[1, 2], l, w, s=0); for(n=1, nn, l=length(v); w=vector(l-1, i, v[i]); v=concat(v, if(v[l]-1, concat(w, w), w))); for(i=1, length(v), s += v[i]; print1(s, ", "))

Formula

a(A291481(n)) = A298590(n).
Lim_{k->infinity} a(k)/k = 1.275261... (see A296564).
a(n) ~ d*n, where d = 1.275261... (see A296564).
Showing 1-6 of 6 results.