cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296615 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, a(n) XOR a(n+1) is a cube (where XOR denotes the XOR binary operator).

Original entry on oeis.org

1, 9, 8, 19, 18, 26, 27, 91, 38, 39, 47, 46, 53, 52, 60, 61, 64, 65, 73, 72, 83, 82, 90, 130, 131, 139, 138, 145, 144, 152, 153, 217, 164, 124, 103, 102, 110, 111, 116, 117, 125, 165, 173, 172, 183, 182, 190, 191, 194, 195, 203, 202, 209, 208, 216, 399, 343
Offset: 1

Views

Author

Rémy Sigrist, Dec 17 2017

Keywords

Comments

This sequence has similarities with A175428: here a(n) XOR a(n+1) is a cube, there a(n) + a(n+1) is a cube.
This sequence is conjectured to the a permutation of the natural numbers.
The first fixed points are: 1, 5676, 5677, 5698, 11677, 13226, 26943, 26946, 27575, 28039, 28569, 28625, 30127, 30162, 37660, 37661, 44672, 44673, 45934.
The scatterplot of the first terms of the sequence shows hatches (see Links section).

Examples

			The first terms, alongside a(n) XOR a(n+1), are:
  n     a(n)    a(n) XOR a(n+1)
  --    ----    ---------------
   1       1    2^3
   2       9    1^3
   3       8    3^3
   4      19    1^3
   5      18    2^3
   6      26    1^3
   7      27    4^3
   8      91    5^3
   9      38    1^3
  10      39    2^3
  11      47    1^3
  12      46    3^3
  13      53    1^3
  14      52    2^3
  15      60    1^3
  16      61    5^3
  17      64    1^3
  18      65    2^3
  19      73    1^3
  20      72    3^3
		

Crossrefs

Programs

  • PARI
    seen = 0; unseen = 1
    other(p) = seen += 2^p; while (bittest(seen, unseen), unseen++); \
    for (v=unseen, oo, if (!bittest(seen, v) && ispower(bitxor(p,v),3), return (v)))
    for (n=1, 57, v=if (n==1, 1, other(v)); print1 (v ", "))