A296615 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, a(n) XOR a(n+1) is a cube (where XOR denotes the XOR binary operator).
1, 9, 8, 19, 18, 26, 27, 91, 38, 39, 47, 46, 53, 52, 60, 61, 64, 65, 73, 72, 83, 82, 90, 130, 131, 139, 138, 145, 144, 152, 153, 217, 164, 124, 103, 102, 110, 111, 116, 117, 125, 165, 173, 172, 183, 182, 190, 191, 194, 195, 203, 202, 209, 208, 216, 399, 343
Offset: 1
Examples
The first terms, alongside a(n) XOR a(n+1), are: n a(n) a(n) XOR a(n+1) -- ---- --------------- 1 1 2^3 2 9 1^3 3 8 3^3 4 19 1^3 5 18 2^3 6 26 1^3 7 27 4^3 8 91 5^3 9 38 1^3 10 39 2^3 11 47 1^3 12 46 3^3 13 53 1^3 14 52 2^3 15 60 1^3 16 61 5^3 17 64 1^3 18 65 2^3 19 73 1^3 20 72 3^3
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of the first 50000 terms
Programs
-
PARI
seen = 0; unseen = 1 other(p) = seen += 2^p; while (bittest(seen, unseen), unseen++); \ for (v=unseen, oo, if (!bittest(seen, v) && ispower(bitxor(p,v),3), return (v))) for (n=1, 57, v=if (n==1, 1, other(v)); print1 (v ", "))
Comments