A296620 Number of 4-regular (quartic) connected graphs on n nodes with diameter k written as irregular triangle T(n,k).
1, 0, 1, 0, 2, 0, 6, 0, 16, 0, 24, 35, 0, 37, 227, 1, 0, 26, 1502, 16, 0, 10, 10561, 202, 5, 0, 1, 84103, 4006, 58, 0, 1, 722252, 82726, 493, 19, 0, 0, 6383913, 1647078, 6224, 202, 1, 0, 0, 55831405, 30291536, 96504, 2156, 33
Offset: 5
Examples
Triangle begins: Diameter n/ 1 2 3 4 5 6 7 5: 1 6: 0 1 7: 0 2 8: 0 6 9: 0 16 10: 0 24 35 11: 0 37 227 1x 12: 0 26 1502 16 13: 0 10 10561 202 5 14: 0 1x 84103 4006 58 15: 0 1x 722252 82726 493 19 16: 0 0 6383913 1647078 6224 202 1x 17: 0 0 55831405 30291536 96504 2156 33 . x indicates provision of adjacency information below. Examples of unique 4-regular graphs with minimum diameter: Adjacency matrix of the graph of diameter 2 on 14 nodes: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 . 1 1 1 1 . . . . . . . . . 2 1 . . . . 1 1 1 . . . . . . 3 1 . . . . 1 1 1 . . . . . . 4 1 . . . . . . . 1 1 1 . . . 5 1 . . . . . . . . . . 1 1 1 6 . 1 1 . . . . . 1 . . 1 . . 7 . 1 1 . . . . . . 1 . . 1 . 8 . 1 1 . . . . . . . 1 . . 1 9 . . . 1 . 1 . . . . . . 1 1 10 . . . 1 . . 1 . . . . 1 . 1 11 . . . 1 . . . 1 . . . 1 1 . 12 . . . . 1 1 . . . 1 1 . . . 13 . . . . 1 . 1 . 1 . 1 . . . 14 . . . . 1 . . 1 1 1 . . . . . Adjacency matrix of the graph of diameter 2 on 15 nodes: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 . 1 1 1 1 . . . . . . . . . . 2 1 . 1 . . 1 1 . . . . . . . . 3 1 1 . . . . . 1 1 . . . . . . 4 1 . . . . . . . . 1 1 1 . . . 5 1 . . . . . . . . . . . 1 1 1 6 . 1 . . . . . . . 1 1 . 1 . . 7 . 1 . . . . . . . . . 1 . 1 1 8 . . 1 . . . . . . 1 . 1 . 1 . 9 . . 1 . . . . . . . 1 . 1 . 1 10 . . . 1 . 1 . 1 . . . . . . 1 11 . . . 1 . 1 . . 1 . . . . 1 . 12 . . . 1 . . 1 1 . . . . 1 . . 13 . . . . 1 1 . . 1 . . 1 . . . 14 . . . . 1 . 1 1 . . 1 . . . . 15 . . . . 1 . 1 . 1 1 . . . . . . Examples of unique graphs with maximum diameter: Adjacency matrix of the graph of diameter 4 on 11 nodes: 1 2 3 4 5 6 7 8 9 0 1 1 . 1 1 1 1 . . . . . . 2 1 . 1 1 1 . . . . . . 3 1 1 . 1 1 . . . . . . 4 1 1 1 . . 1 . . . . . 5 1 1 1 . . 1 . . . . . 6 . . . 1 1 . 1 1 . . . 7 . . . . . 1 . . 1 1 1 8 . . . . . 1 . . 1 1 1 9 . . . . . . 1 1 . 1 1 10 . . . . . . 1 1 1 . 1 11 . . . . . . 1 1 1 1 . . Adjacency matrix of the graph of diameter 7 on 16 nodes: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 1 . 1 1 1 1 . . . . . . . . . . . 2 1 . 1 1 1 . . . . . . . . . . . 3 1 1 . 1 1 . . . . . . . . . . . 4 1 1 1 . . 1 . . . . . . . . . . 5 1 1 1 . . 1 . . . . . . . . . . 6 . . . 1 1 . 1 1 . . . . . . . . 7 . . . . . 1 . 1 1 1 . . . . . . 8 . . . . . 1 1 . 1 1 . . . . . . 9 . . . . . . 1 1 . 1 1 . . . . . 10 . . . . . . 1 1 1 . 1 . . . . . 11 . . . . . . . . 1 1 . 1 1 . . . 12 . . . . . . . . . . 1 . . 1 1 1 13 . . . . . . . . . . 1 . . 1 1 1 14 . . . . . . . . . . . 1 1 . 1 1 15 . . . . . . . . . . . 1 1 1 . 1 16 . . . . . . . . . . . 1 1 1 1 .
Links
- M. Meringer, GenReg, Generation of regular graphs.
- Wikipedia, Distance (graph theory).
- Wikipedia, Floyd-Warshall algorithm.
Comments