A296627 a(n) = BarnesG(4*n).
0, 2, 24883200, 6658606584104736522240000000, 69113789582492712943486800506462734562847413501952000000000000000
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Barnes G-Function.
- Wikipedia, Barnes G-function.
Programs
-
Mathematica
Table[BarnesG[4*n], {n, 0, 6}] Round[Table[Glaisher^15 * E^(-5/4) * 2^(7/3 - 14*n + 16*n^2) * Pi^(3/2 - 6*n) * BarnesG[n] * BarnesG[1/4 + n]^2 * BarnesG[1/2 + n]^3 * BarnesG[3/4 + n]^4 * BarnesG[1 + n]^3 * BarnesG[5/4 + n]^2 * BarnesG[3/2 + n], {n, 0, 6}]]
Formula
a(n) = A^15 * exp(-5/4) * 2^(7/3 - 14*n + 16*n^2) * Pi^(3/2 - 6*n) * BarnesG(n) * BarnesG(1/4 + n)^2 * BarnesG(1/2 + n)^3 * BarnesG(3/4 + n)^4 * BarnesG(1 + n)^3 * BarnesG(5/4 + n)^2 * BarnesG(3/2 + n), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ 2^(16*n^2 - 6*n + 1/3) * n^(8*n^2 - 4*n + 5/12) * Pi^(2*n - 1/2) / (A * exp(12*n^2 - 4*n - 1/12)), where A is the Glaisher-Kinkelin constant A074962.