A296656 Triangle whose n-th row is the concatenated sequence of all Lyndon compositions of n in reverse-lexicographic order.
1, 2, 3, 1, 2, 4, 1, 3, 1, 1, 2, 5, 2, 3, 1, 4, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 6, 2, 4, 1, 5, 1, 3, 2, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 7, 3, 4, 2, 5, 2, 2, 3, 1, 6, 1, 4, 2, 1, 3, 3, 1, 2, 4, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 5, 1, 1, 3, 2
Offset: 1
Examples
Triangle of Lyndon compositions begins: (1), (2), (3),(12), (4),(13),(112), (5),(23),(14),(122),(113),(1112), (6),(24),(15),(132),(123),(114),(1122),(1113),(11112), (7),(34),(25),(223),(16),(142),(133),(124),(1222),(1213),(115),(1132),(1123),(11212),(1114),(11122),(11113),(111112).
Crossrefs
Programs
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; Table[Sort[Select[Join@@Permutations/@IntegerPartitions[n],LyndonQ],OrderedQ[PadRight[{#2,#1}]]&],{n,7}]