cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296659 Length of the final word in the standard Lyndon word factorization of the first n terms of A000002.

Original entry on oeis.org

1, 2, 3, 1, 1, 3, 1, 5, 6, 1, 8, 9, 1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 1, 3, 1, 14, 15, 1, 1, 3, 1, 1, 3, 1, 8, 9, 1, 11, 12, 1, 1, 3, 1, 17, 18, 1, 20, 1, 1, 3, 1, 1, 3, 27, 1, 29, 30, 1, 1, 3, 1, 35, 36, 1, 38, 39, 1, 1, 3, 1, 1, 3, 1, 8, 9, 1, 11, 1, 1, 3, 15, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2017

Keywords

Examples

			The sequence of final words begins: 1, 12, 122, 1, 1, 112, 1, 11212, 112122, 1, 11212212, 112122122, 1, 1, 112, 1, 1, 112, 1121122, 1, 112112212, 1, 1, 112, 1, 11211221211212, 112112212112122, 1, 1, 112.
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],LyndonQ[Take[q,#]]&]];
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],Part[q,-2],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]];
    Table[Length[Last[qit[Nest[kolagrow,1,n]]]],{n,150}]