A296663 Row sums of A296664.
1, 1, 4, 7, 20, 38, 96, 187, 444, 874, 2000, 3958, 8840, 17548, 38528, 76627, 166124, 330818, 710256, 1415650, 3016056, 6015316, 12736064, 25413342, 53530840, 106853668, 224107936, 447472972, 935062544, 1867450648, 3890018816, 7770342787, 16141765964
Offset: 0
Keywords
Programs
-
Maple
a := proc(n) if n mod 2 = 0 then ((n+2)/2)*GAMMA((n+1)/2)/GAMMA((n+2)/2) else GAMMA((n+4)/2)/GAMMA((n+3)/2) fi; 2^n*(2*%/sqrt(Pi)-1) end: seq(a(n), n=0..32);
-
Mathematica
a[n_] := 2^n ((n + 2 + Mod[n, 2]) Binomial[(n - 1 + 3 Mod[n, 2])/2, -1/2] - 1); Table[a[n], {n, 0, 32}]
Formula
a(n) = 2^n*(2*h(n)/sqrt(Pi) - 1) where h(n) = (n/2+1)*Gamma((n+1)/2)/Gamma((n+2)/2) if n mod 2 = 0 else Gamma((n+4)/2)/Gamma((n+3)/2).
a(n) = 2^n*((n+2+(n mod 2))*binomial((n-1+3*(n mod 2))/2, -1/2) - 1).
-(n+1)*(n^2-2*n-1) *a(n) +2*(n-2)*(n^2+n+1) *a(n-1) +4*(n-1)*(n^2-n-5) *a(n-2) -8*(n-2)*(n^2-2) *a(n-3)=0. - R. J. Mathar, Jan 03 2018