A296693 Numbers whose base-3 digits d(m), d(m-1), ... d(0) have #(rises) < #(falls); see Comments.
3, 6, 7, 9, 12, 18, 21, 22, 24, 25, 27, 30, 33, 34, 36, 39, 48, 54, 57, 60, 61, 63, 64, 65, 66, 67, 69, 70, 72, 75, 76, 78, 79, 81, 84, 87, 88, 90, 93, 99, 102, 103, 105, 106, 108, 111, 114, 115, 117, 120, 129, 144, 147, 156, 162, 165, 168, 169, 171, 174
Offset: 1
Examples
The base-3 digits of 174 are 2,0,1,1,0; here #(rises) = 1 and #(falls) = 2, so 174 is in the sequence.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; b = 3; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296691 *) Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296692 *) Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296693 *) rltfQ[n_]:=Module[{d=Differences[IntegerDigits[n,3]]},Count[d,?(#>0&)]<Count[d,?(#<0&)]]; Select[Range[200],rltfQ] (* Harvey P. Dale, Sep 25 2019 *)
Comments