A296697 Numbers whose base-5 digits d(m), d(m-1), ... d(0) have #(rises) = #(falls); see Comments.
1, 2, 3, 4, 6, 12, 18, 24, 26, 27, 28, 29, 31, 35, 36, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54, 57, 58, 59, 62, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78, 79, 82, 83, 84, 88, 89, 93, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108, 109, 113, 114, 119, 124, 126
Offset: 1
Examples
The base-5 digits of 126 are 1,0,0,1; here #(rises) = 1 and #(falls) = 1, so 126 is in the sequence.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; b = 5; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296697 *) Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296698 *) Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296699 *) Select[Range[130],Total[Sign[Differences[IntegerDigits[#,5]]]]==0&] (* Harvey P. Dale, Jul 30 2019 *)
Comments