cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296712 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 120, 121, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296712-A296714 partition the natural numbers.
****
Guide to related sequences:
Base #(rises) = #(falls) #(rises) > #(falls) #(rises) < #(falls)
2 A005408 (none) A005843

Examples

			The base-10 digits of 181 are 1,8,1; here #(rises) = 1 and #(falls) = 1, so 181 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296712 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296713 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296714 *)

A296709 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 99, 100, 108, 109, 110, 117, 118, 119, 120, 126, 127, 128, 129, 130, 135, 136, 137, 138, 139, 140, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296709-A296711 partition the natural numbers. See the guide at A296712.

Examples

			The base-9 digits of 158 are 1,8,5; here #(rises) = 1 and #(falls) = 1, so 158 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296709 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296710 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296711 *)

A296711 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments.

Original entry on oeis.org

9, 18, 19, 27, 28, 29, 36, 37, 38, 39, 45, 46, 47, 48, 49, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 81, 90, 162, 171, 172, 180, 181, 243, 252, 253, 261, 262, 263, 270, 271, 272, 324, 333, 334, 342, 343, 344, 351
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296709-A296711 partition the natural numbers. See the guide at A296712.

Examples

			The base-9 digits of 351 are 4,3,0; here #(rises) = 0 and #(falls) = 2, so 351 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296709 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296710 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296711 *)
Showing 1-3 of 3 results.