A296713 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.
12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139
Offset: 1
Examples
The base-10 digits of 139 are 1,3,9; here #(rises) = 2 and #(falls) = 0, so 139 is in the sequence.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296712 *) Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296713 *) Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296714 *) Select[Range[150],Total[Sign[Differences[IntegerDigits[#]]]]>0&] (* Harvey P. Dale, May 21 2021 *)
Comments