A296716 Numbers congruent to {7, 11, 13, 29} mod 30.
7, 11, 13, 29, 37, 41, 43, 59, 67, 71, 73, 89, 97, 101, 103, 119, 127, 131, 133, 149, 157, 161, 163, 179, 187, 191, 193, 209, 217, 221, 223, 239, 247, 251, 253, 269, 277, 281, 283, 299, 307, 311, 313, 329, 337, 341, 343, 359, 367, 371, 373, 389, 397, 401, 403
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n: n in [0..403] | n mod 30 in {7, 11, 13, 29}];
-
Mathematica
LinearRecurrence[{1, 0, 0, 1, -1}, {7, 11, 13, 29, 37}, 60]
-
PARI
Vec(x*(7 + 4*x + 2*x^2 + 16*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))
Formula
a(n) = a(n-1) + a(n-4) - a(n-5), n >= 6.
a(n) = a(n-4) + 30.
G.f.: x*(7 + 4*x + 2*x^2 + 16*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (-15 + 5*(-1)^n + (3+9*i)*(-i)^n + (3-9*i)*i^n + 30*n) / 4 where i=sqrt(-1). - Colin Barker, Dec 19 2017
E.g.f.: (5*(e^(-x) + (6*x - 3)*e^x) + 6*cos(x) + 18*sin(x))/4. - Iain Fox, Dec 19 2017
Comments