cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296716 Numbers congruent to {7, 11, 13, 29} mod 30.

Original entry on oeis.org

7, 11, 13, 29, 37, 41, 43, 59, 67, 71, 73, 89, 97, 101, 103, 119, 127, 131, 133, 149, 157, 161, 163, 179, 187, 191, 193, 209, 217, 221, 223, 239, 247, 251, 253, 269, 277, 281, 283, 299, 307, 311, 313, 329, 337, 341, 343, 359, 367, 371, 373, 389, 397, 401, 403
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 19 2017

Keywords

Comments

For any m >= 0, if F(m) = 2^(2^m) + 1 has a factor of the form b = a(n)*2^k + 1 with k >= m + 2 and n >= 1, then the integer F(m)/b is congruent to 13 or 19 mod 30.

Crossrefs

Programs

  • Magma
    [n: n in [0..403] | n mod 30 in {7, 11, 13, 29}];
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {7, 11, 13, 29, 37}, 60]
  • PARI
    Vec(x*(7 + 4*x + 2*x^2 + 16*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))

Formula

a(n) = a(n-1) + a(n-4) - a(n-5), n >= 6.
a(n) = a(n-4) + 30.
G.f.: x*(7 + 4*x + 2*x^2 + 16*x^3 + x^4)/((1 + x)*(1 + x^2)*(1 - x)^2).
a(n) = (-15 + 5*(-1)^n + (3+9*i)*(-i)^n + (3-9*i)*i^n + 30*n) / 4 where i=sqrt(-1). - Colin Barker, Dec 19 2017
E.g.f.: (5*(e^(-x) + (6*x - 3)*e^x) + 6*cos(x) + 18*sin(x))/4. - Iain Fox, Dec 19 2017