cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296712 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 120, 121, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296712-A296714 partition the natural numbers.
****
Guide to related sequences:
Base #(rises) = #(falls) #(rises) > #(falls) #(rises) < #(falls)
2 A005408 (none) A005843

Examples

			The base-10 digits of 181 are 1,8,1; here #(rises) = 1 and #(falls) = 1, so 181 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 10; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296712 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296713 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296714 *)

A296751 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.

Original entry on oeis.org

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 44, 45, 46, 47, 48, 49, 50, 51, 57, 58, 59, 60, 61, 62, 63, 64, 71, 72, 73, 74, 75, 76, 77, 85, 86, 87, 88, 89, 90, 99, 100, 101, 102, 103, 113, 114, 115, 116, 127, 128
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296751-A296753 partition the natural numbers. See the guide at A296712.

Examples

			The base-13 digits of 1000 are 5,11,12; here #(rises) = 2 and #(falls) = 0, so 1000 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296750 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296751 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296752 *)

A296750 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 183, 195, 196, 208, 209, 210, 221, 222, 223, 224, 234, 235, 236, 237, 238, 247, 248, 249, 250, 251, 252
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2018

Keywords

Comments

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296750-A296751 partition the natural numbers. See the guide at A296712.

Examples

			The base-13 digits of 998 are 5,11,10; here #(rises) = 1 and #(falls) = 1, so 998 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
    Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296750 *)
    Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &]  (* A296751 *)
    Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &]  (* A296752 *)

A297279 Numbers whose base-13 digits have greater down-variation than up-variation; see Comments.

Original entry on oeis.org

13, 26, 27, 39, 40, 41, 52, 53, 54, 55, 65, 66, 67, 68, 69, 78, 79, 80, 81, 82, 83, 91, 92, 93, 94, 95, 96, 97, 104, 105, 106, 107, 108, 109, 110, 111, 117, 118, 119, 120, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 143, 144
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
Differs from A296752 first for 195 = 120_13, which has the same number of rises and falls and is therefore not in A296752, but has DV(195,13) =2 > UV(195,13) = 1 and is in this sequence. - R. J. Mathar, Jan 23 2018

Examples

			144 in base-13:  11,1, having DV = 10, UV = 0, so that 144 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 13; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297279 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297280 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297281 *)
Showing 1-4 of 4 results.