A296753 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 224, 225, 238, 239, 240, 252, 253, 254, 255, 266, 267, 268, 269, 270, 280, 281, 282
Offset: 1
Examples
The base-14 digits of 1000000 are 2,8,6,2,12; here #(rises) = 2 and #(falls) = 2, so 1000000 is in the sequence.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; b = 14; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296753 *) Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296754 *) Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296755 *) Select[Range[300],Total[Sign[Differences[IntegerDigits[#,14]]]]==0&] (* Harvey P. Dale, Sep 20 2022 *)
Comments