A296759 Numbers whose base-16 digits d(m), d(m-1), ..., d(0) have #(rises) = #(falls); see Comments.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 273, 288, 289, 304, 305, 306, 320, 321, 322, 323, 336, 337
Offset: 1
Examples
The base-16 digits of 2^20 + 1 are 1, 0, 0, 0, 0, 1; here #(rises) = 1 and #(falls) = 1, so 2^20 + 1 is in the sequence.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; b = 16; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296759 *) Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296760 *) Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296761 *) Select[Range[400],Total[Sign[Differences[IntegerDigits[#,16]]]]==0&] (* Harvey P. Dale, Aug 11 2021 *)
Comments