cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296786 a(1) = a(2) = a(5) = 2, a(3) = 1, a(4) = 3, a(6) = 5; a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)) for n > 6.

Original entry on oeis.org

2, 2, 1, 3, 2, 5, 7, 8, 7, 4, 11, 12, 11, 4, 15, 16, 15, 4, 19, 20, 19, 4, 23, 24, 23, 4, 27, 28, 27, 4, 31, 32, 31, 4, 35, 36, 35, 4, 39, 40, 39, 4, 43, 44, 43, 4, 47, 48, 47, 4, 51, 52, 51, 4, 55, 56, 55, 4, 59, 60, 59, 4, 63, 64, 63, 4, 67, 68, 67, 4, 71, 72, 71, 4, 75, 76, 75, 4, 79, 80, 79, 4
Offset: 1

Views

Author

Altug Alkan, Dec 20 2017

Keywords

Comments

A quasi-periodic solution to the three-term Hofstadter recurrence a(n) = a(n-a(n-1)) + a(n-a(n-2)) + a(n-a(n-3)). See comments in A296518.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; procname(n-procname(n-1))+procname(n-procname(n-2))+procname(n-procname(n-3)) end proc:
    a(1):= 2: a(2):= 2: a(3):= 1: a(4):= 3: a(5):= 2: a(6):= 5:
    map(a, [$1..100]); # after Robert Israel at A296440
  • Mathematica
    a[n_] := a[n] = If[n<7, {2, 2, 1, 3, 2, 5}[[n]], a[n - a[n-1]] + a[n - a[n-2]] + a[n - a[n-3]]]; Array[a, 100] (* after Giovanni Resta at A296440 *)
  • PARI
    q=vector(10^5); q[1]=2;q[2]=2;q[3]=1;q[4]=3;q[5]=2;q[6]=5;for(n=7, #q, q[n] = q[n-q[n-1]]+q[n-q[n-2]]+q[n-q[n-3]]); q
    
  • PARI
    Vec(x*(2 + 2*x + x^2 + 3*x^3 - 2*x^4 + x^5 + 5*x^6 + 2*x^7 + 5*x^8 - 4*x^9 - 2*x^10 - x^11 - x^12 + x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^100)) \\ Colin Barker, Dec 29 2017

Formula

a(4*k-1) = a(4*k+1) = 4*k-1, a(4*k) = 4*k, a(4*k+2) = 4, for k > 1.
From Colin Barker, Dec 28 2017: (Start)
G.f.: x*(2 + 2*x + x^2 + 3*x^3 - 2*x^4 + x^5 + 5*x^6 + 2*x^7 + 5*x^8 - 4*x^9 - 2*x^10 - x^11 - x^12 + x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>14.
(End)