cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296806 Take a prime, convert it to base 2, remove its most significant digit and its least significant digit and convert it back to base 10. Sequence lists primes that generate another prime by this process.

Original entry on oeis.org

13, 23, 31, 37, 43, 47, 59, 71, 79, 103, 127, 139, 151, 163, 167, 191, 211, 223, 251, 263, 271, 283, 331, 379, 463, 523, 547, 571, 587, 599, 607, 619, 631, 647, 659, 691, 719, 727, 739, 787, 811, 827, 839, 859, 907, 911, 967, 971, 991, 1031, 1039, 1051, 1063, 1087
Offset: 1

Views

Author

Paolo P. Lava, Paolo Iachia, Dec 21 2017

Keywords

Comments

From an idea of Ken Abbott (see link).
From Paolo Iachia, Dec 21 2017: (Start)
Let us call these numbers "core of a prime".
Let C(q) be the core of a prime q.
Then C(q) = (q - 2^floor(log_2(q)) - 1)/2.
Examples: C(59) = (59 - 2^5 - 1)/2 = 13; C(71) = (71 - 2^6 - 1)/2 = 3; C(73) = (73 - 2^6 - 1)/2 = 4; C(251) = (251 - 2^7 - 1)/2 = 61.
0 <= C(q) <= 2^(floor(log_2(q)) - 1) - 1. The minimum (0) occurs when q = 2^n+1, with n > 2. Example: 17 = 2^4+1, C(17) = (17 - 2^4 - 1)/2 = 0. The maximum is reached when q = 2^n-1 is a Mersenne prime. Example: 127 = 2^7 - 1, C(127) = (127 - 2^6 - 1)/2 = 31 = 2^5 - 1.
The last example is particularly interesting, as both the prime q and its core are Mersenne primes. The same holds for C(31) = 7 and for C(524247) = 131071, with 524247 = 2^19-1 and 131071 = 2^17-1, both Mersenne primes. Are there more such cases?
Note that the core of Mersenne number (prime or not) is a Mersenne number by definition. Counterexamples include C(8191) = 2047, with 8191 = 2^13 - 1, a Mersenne prime, but 2047 = 2^11 - 1 = 23*89, a Mersenne number not prime, and C(131071) = 32767 = 2^15 - 1 = 7*31*151, with 2 of its factors being Mersenne primes.
Primes whose binary expansion is of the form q = 1 0 ... 0 c_1 c_2 ... c_k 1 - with none or any number of consecutive 0's and with binary core c_1 c_2 ... c_k, k >= 0 - share the same core value. Let p = C(q), then we can write, in decimal form, q = (2p+1) + 2^n, for an appropriate n. While the property is true for p prime, it can be generalized to any positive integer.
Conjecture: for any positive integer p, there are infinitely many primes q for which there exists an integer n such that q-(2p+1) = 2^n. (End)

Examples

			13 in base 2 is 1101 and 10 is 2;
23 in base 2 is 10111 and 011 is 3;
31 in base 2 is 11111 and 111 is 7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,j,n,ok,x;  x:=5; for n from x to q do ok:=1; a:=convert(ithprime(n),base,2); b:=nops(a)-1; while a[b]=0 do b:=b-1; od; c:=0;
    for j from b by -1 to 2 do c:=2*c+a[j]; od;if isprime(c) then x:=n; print(ithprime(n)); fi; od; end: P(10^6);
    # simpler alternative:
    select(t -> isprime(t) and isprime((t - 2^ilog2(t) - 1)/2), [seq(i,i=3..10^4,2)]); # Robert Israel, Dec 28 2017
  • Mathematica
    Select[Prime[Range[200]],PrimeQ[FromDigits[Most[Rest[IntegerDigits[ #,2]]],2]]&] (* Harvey P. Dale, Jul 19 2020 *)
  • PARI
    lista(nn) = forprime(p=13, nn, if(isprime((p - 2^logint(p, 2) - 1)/2), print1(p, ", "))) \\ Iain Fox, Dec 28 2017
    
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def agen(): # generator of terms
        p = 7
        while True:
            if isprime(int(bin(p)[3:-1], 2)):
                yield p
            p = nextprime(p)
    print(list(islice(agen(), 54))) # Michael S. Branicky, May 16 2022

Formula

Primes q such that C(q) = (q - 2^floor(log_2(q)) - 1)/2 is prime too.