A296834 T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.
2, 3, 3, 5, 6, 5, 8, 14, 14, 8, 13, 31, 43, 31, 13, 21, 70, 132, 132, 70, 21, 34, 157, 402, 573, 402, 157, 34, 55, 353, 1230, 2441, 2441, 1230, 353, 55, 89, 793, 3755, 10485, 14379, 10485, 3755, 793, 89, 144, 1782, 11475, 44951, 85500, 85500, 44951, 11475, 1782, 144
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..1 ..1..0..1..1. .1..1..1..1. .0..0..1..0. .0..0..0..0. .0..1..0..0 ..0..0..0..0. .1..1..1..1. .1..0..0..0. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..0..0. .0..0..1..1. .1..0..0..1. .0..1..0..0 ..0..0..1..0. .0..0..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3)
k=3: [order 15]
k=4: [order 50]
Comments