cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296835 Expansion of e.g.f. exp(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 1, 4, 33, 451, 9110, 253401, 9246881, 427272364, 24332740569, 1671761966755, 136185663849422, 12966840876896193, 1425738305622057713, 179172604156015950676, 25507107918052543195905, 4081610970381242583997171, 729135575105289450378655526
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			exp(x*tan(x/2)) = 1 + x^2/2! + 4*x^4/4! + 33*x^6/6! + 451*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Exp[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*tan(x/2)).

A305711 Expansion of e.g.f. exp(2*x/(exp(x) + 1)).

Original entry on oeis.org

1, 1, 0, -2, -1, 11, 13, -111, -220, 1756, 5051, -39775, -153191, 1215345, 5952668, -48020714, -288569149, 2377190003, 17069110381, -143857868895, -1209439895944, 10435153277620, 101078662547567, -892827447251575, -9834570608359487, 88900938146195601, 1101567283699652888
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2018

Keywords

Examples

			exp(2*x/(exp(x) + 1)) = 1 + x - 2*x^3/3! - x^4/4! + 11*x^5/5! + 13*x^6/6! - 111*x^7/7! - 220*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(2*x/(exp(x)+1)),x=0,27): seq(n!*coeff(a,x,n),n=0..26); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[2 x/(Exp[x] + 1)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[k EulerE[k - 1, 0] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]
    a[n_] := a[n] = Sum[2 (1 - 2^k) BernoulliB[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]
Showing 1-2 of 2 results.