cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296857 For any number n > 0, let f(n) be the function that associates k to the prime(k)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the arithmetic functions with nonnegative integer values and a finite number of nonzero values; let g be the inverse of f; a(n) = g(f(n) * f(n)) (where i * j denotes the Dirichlet convolution of i and j).

Original entry on oeis.org

1, 2, 7, 16, 23, 126, 53, 512, 2401, 1150, 97, 9072, 151, 5194, 27209, 65536, 227, 388962, 311, 230000, 133931, 23474, 419, 2612736, 279841, 51038, 40353607, 2036048, 541, 12244050, 661, 33554432, 571039, 131206, 1668811, 252047376, 827, 224542, 1447033
Offset: 1

Views

Author

Rémy Sigrist, Dec 21 2017

Keywords

Comments

This sequence is the main diagonal of A248601.
See A248601 for additional comments.
For any n > 0, gcd(2 * n, a(2 * n)) = 2 * n.

Examples

			For n = 12:
- f(12) = (2, 1, 0, 0, ...),
- f(12) * f(12) = (4, 4, 0, 1, 0, 0, ...),
- a(12) = prime(1)^4 * prime(2)^4 * prime(4) = 2^4 * 3^4 * 7 = 9072.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod(i=1, #p, prod(j=1, #p, prime(p[i]*p[j])^(f[i,2]*f[j,2])))

Formula

For any n > 0 and k >= 0:
- a(n) = A248601(n, n),
- A001221(a(n)) <= A001221(n)^2,
- A001222(a(n)) = A001222(n)^2,
- A055396(a(n)) = A055396(n)^2,
- A061395(a(n)) = A061395(n)^2,
- a(A000040(n)) = A011757(n),
- a(A000040(n)^k) = A011757(n)^(k^2).