A296857 For any number n > 0, let f(n) be the function that associates k to the prime(k)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the arithmetic functions with nonnegative integer values and a finite number of nonzero values; let g be the inverse of f; a(n) = g(f(n) * f(n)) (where i * j denotes the Dirichlet convolution of i and j).
1, 2, 7, 16, 23, 126, 53, 512, 2401, 1150, 97, 9072, 151, 5194, 27209, 65536, 227, 388962, 311, 230000, 133931, 23474, 419, 2612736, 279841, 51038, 40353607, 2036048, 541, 12244050, 661, 33554432, 571039, 131206, 1668811, 252047376, 827, 224542, 1447033
Offset: 1
Keywords
Examples
For n = 12: - f(12) = (2, 1, 0, 0, ...), - f(12) * f(12) = (4, 4, 0, 1, 0, 0, ...), - a(12) = prime(1)^4 * prime(2)^4 * prime(4) = 2^4 * 3^4 * 7 = 9072.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored logarithmic scatterplot of the first 50000 terms (where the color is function of A001222(n))
- Wikipedia, Dirichlet convolution.
Programs
-
PARI
a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod(i=1, #p, prod(j=1, #p, prime(p[i]*p[j])^(f[i,2]*f[j,2])))
Comments