cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296936 Inert rational primes in the field Q(sqrt(11)).

Original entry on oeis.org

3, 13, 17, 23, 29, 31, 41, 47, 59, 61, 67, 71, 73, 101, 103, 109, 149, 163, 173, 179, 191, 193, 197, 199, 223, 233, 241, 251, 277, 281, 293, 311, 331, 337, 349, 367, 373, 379, 383, 409, 419, 443, 457, 461, 463, 467, 487, 499, 541, 557, 569, 587, 593, 599, 601
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Crossrefs

Programs

A035193 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 11.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 1, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[11, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=11); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(11, d)); \\ Amiram Eldar, Nov 18 2023

Formula

From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(11, d).
Multiplicative with a(11^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(11, p) = -1 (p is in A296936), and a(p^e) = e+1 if Kronecker(11, p) = 1 (p is in A296935).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(3*sqrt(11)+10)/(3*sqrt(11)) = 0.60166042997... . (End)

A035226 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = 44.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 2, 1, 1, 2, 1, 0, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 0, 1, 0, 0, 4, 1, 2, 2, 0, 2, 0, 0, 2, 1, 2, 0, 0, 0, 3, 3, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 0, 1, 0, 2, 0, 2, 2, 0, 2, 2, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[44, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
  • PARI
    my(m = 44); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(44, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(44, d).
Multiplicative with a(p^e) = 1 if Kronecker(44, p) = 0 (p = 2 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(44, p) = -1 (p is in A296936), and a(p^e) = e+1 if Kronecker(44, p) = 1 (p is in A296935).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(3*sqrt(11)+10)/sqrt(44) = 0.902490644956... . (End)
Showing 1-3 of 3 results.