cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296938 Rational primes that decompose in the field Q(sqrt(17)).

Original entry on oeis.org

2, 13, 19, 43, 47, 53, 59, 67, 83, 89, 101, 103, 127, 137, 149, 151, 157, 179, 191, 223, 229, 239, 251, 257, 263, 271, 281, 293, 307, 331, 349, 353, 359, 373, 383, 389, 409, 421, 433, 443, 457, 461, 463, 467, 491, 509, 523, 557, 563, 569, 577, 587, 593, 599
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Comments

From Jianing Song, Apr 21 2022: (Start)
Primes p such that kronecker(17, p) = kronecker(p, 17) = 1, where kronecker() is the kronecker symbol. That is to say, primes p that are quadratic residues modulo 17.
Primes p such that p^8 == 1 (mod 17).
Primes p == 1, 2, 4, 8, 9, 13, 15, 16 (mod 17). (End)

Crossrefs

Cf. A011584 (kronecker symbol modulo 17).
Rational primes that decompose in the quadratic field with discriminant D: A139513 (D=-20), A191019 (D=-19), A191018 (D=-15), A296920 (D=-11), A033200 (D=-8), A045386 (D=-7), A002144 (D=-4), A002476 (D=-3), A045468 (D=5), A001132 (D=8), A097933 (D=12), A296937 (D=13), this sequence (D=17).
Cf. A038890 (inert rational primes in the field Q(sqrt(17))).

Programs