A296938 Rational primes that decompose in the field Q(sqrt(17)).
2, 13, 19, 43, 47, 53, 59, 67, 83, 89, 101, 103, 127, 137, 149, 151, 157, 179, 191, 223, 229, 239, 251, 257, 263, 271, 281, 293, 307, 331, 349, 353, 359, 373, 383, 389, 409, 421, 433, 443, 457, 461, 463, 467, 491, 509, 523, 557, 563, 569, 577, 587, 593, 599
Offset: 1
Links
Crossrefs
Cf. A011584 (kronecker symbol modulo 17).
Rational primes that decompose in the quadratic field with discriminant D: A139513 (D=-20), A191019 (D=-19), A191018 (D=-15), A296920 (D=-11), A033200 (D=-8), A045386 (D=-7), A002144 (D=-4), A002476 (D=-3), A045468 (D=5), A001132 (D=8), A097933 (D=12), A296937 (D=13), this sequence (D=17).
Cf. A038890 (inert rational primes in the field Q(sqrt(17))).
Programs
-
Magma
[p: p in PrimesUpTo(600) | KroneckerSymbol(p, 17) eq 1]; // Vincenzo Librandi, Apr 09 2020
-
Maple
Load the Maple program HH given in A296920. Then run HH(17, 200); This produces A296938, A038890, A038889.
-
Mathematica
Select[Prime[Range[200]], JacobiSymbol[#, 17]==1&] (* Vincenzo Librandi, Apr 09 2020 *)
-
PARI
isA296938(p) = isprime(p) && kronecker(p,17) == 1 \\ Jianing Song, Apr 21 2022
Comments