A296975 Number of aperiodic normal sequences of length n.
1, 2, 12, 72, 540, 4668, 47292, 545760, 7087248, 102247020, 1622632572, 28091562840, 526858348380, 10641342923148, 230283190977300, 5315654681435520, 130370767029135900, 3385534663249753392, 92801587319328411132, 2677687796244281955480, 81124824998504073834516
Offset: 1
Keywords
Examples
The a(3) = 12 aperiodic normal sequences are 112, 121, 122, 123, 132, 211, 212, 213, 221, 231, 312, 321. The 15 non-aperiodic normal sequences of length 6 are: 111111, 112112, 121121, 121212, 122122, 123123, 132132, 211211, 212121, 212212, 213213, 221221, 231231, 312312, 321321.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
Table[DivisorSum[n,MoebiusMu[n/#]*Sum[k!*StirlingS2[#,k],{k,#}]&],{n,25}]
-
PARI
\\ here b(n) is A000670. b(n)={polcoef(serlaplace(1/(2-exp(x+O(x*x^n)))),n)} a(n)={sumdiv(n, d, moebius(d)*b(n/d))} \\ Andrew Howroyd, Aug 29 2018
Comments