cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296979 Expansion of e.g.f. arcsin(log(1 + x)).

Original entry on oeis.org

0, 1, -1, 3, -12, 68, -480, 4144, -42112, 494360, -6581880, 98079696, -1617373296, 29245459176, -575367843960, 12235339942344, -279650131845120, 6836254328079936, -177979145883651648, 4916243253642325056, -143602294106947553280, 4422411460743707222784
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arcsin(log(1 + x)) = x^1/1! - x^2/2! + 3*x^3/3! - 12*x^4/4! + 68*x^5/5! - 480*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsin(log(1+x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[ArcSin[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[-I Log[I Log[1 + x] + Sqrt[1 - Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ -(-1)^n * n^(n-1) / (exp(1) - 1)^(n - 1/2). - Vaclav Kotesovec, Mar 26 2019

A296980 Expansion of e.g.f. arcsinh(log(1 + x)).

Original entry on oeis.org

0, 1, -1, 1, 0, -2, -30, 446, -3248, 12412, 16020, -211356, -10756944, 284038272, -3556910448, 19122463296, 135073768320, -1286054192304, -108801241372368, 3952903127312016, -65667347037774720, 339816855220730784, 8862271481944986336
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arcsinh(log(1 + x)) = x^1/1! - x^2/2! + x^3/3! - 2*x^5/5! - 30*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(log(1+x)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[ArcSinh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Log[Log[1 + x] + Sqrt[1 + Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!

A296982 Expansion of e.g.f. arctanh(log(1 + x)).

Original entry on oeis.org

0, 1, -1, 4, -18, 118, -930, 8888, -98504, 1248784, -17790480, 281590032, -4901447232, 93064850448, -1914144990576, 42396742460928, -1006101059149440, 25466710774651776, -684902462140798848, 19503187752732408576, -586221766070655432960
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			arctanh(log(1 + x)) = x^1/1! - x^2/2! + 4*x^3/3! - 18*x^4/4! + 118*x^5/5! - 930*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arctanh(log(1+x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[ArcTanh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Log[1 + Log[1 + x]]/2 - Log[1 - Log[1 + x]]/2, {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-3 of 3 results.