A296992 Largest number m such that n^m divides tau(n), where tau(n) = A000594(n) is Ramanujan's tau function.
3, 2, 3, 1, 3, 1, 3, 2, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 0, 0, 3, 1, 0, 2, 1, 0, 1, 0, 3, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0
Offset: 2
Keywords
Examples
tau(2) = -24 and 2^3 divides 24, so a(2) = 3. tau(3) = 252 and 3^2 divides 252, so a(3) = 2. tau(4) = -1472 and 4^3 divides 1472, so a(4) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10000
- Eric Weisstein's World of Mathematics, Tau Function.
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{m = 0}, While[Mod[RamanujanTau@n, n^m] == 0, m++]; m - 1]; Array[f, 93, 2] (* Robert G. Wilson v, Dec 23 2017 *) a[n_] := IntegerExponent[RamanujanTau[n], n]; Array[a, 100, 2] (* Amiram Eldar, Jan 09 2025 *)
-
PARI
a(n) = valuation(ramanujantau(n), n); \\ Amiram Eldar, Jan 09 2025