A296993 Numbers k such that k^3 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.
1, 2, 4, 6, 8, 16, 24, 32, 64, 96, 128, 256, 288, 384, 512, 1024, 1536, 2048, 4096, 6144, 8192, 16384, 18432, 24576, 32768, 65536, 98304, 131072, 172032, 262144, 276480, 393216, 524288, 1048576, 1179648, 1572864, 1935360, 2097152, 2621440, 3538944, 4194304
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Tau Function.
Programs
-
Python
from itertools import count, islice from sympy import divisor_sigma def A296993_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2)))*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**3, count(max(startvalue,1))) A296993_list = list(islice(A296993_gen(),10)) # Chai Wah Wu, Nov 08 2022
Comments