A297006 Primes p for which pi_{3,2}(p) - pi_{3,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
608981813029, 608981813137, 608981813261, 608981813273, 608981813311, 608981813357, 608981813459, 608981813683, 608981813717, 608981813777, 608981813789, 608981814127, 608981818999, 608981819021, 608981819273, 608981819359, 608981819419, 608981820869, 608981820899, 608981820913, 608981826877, 608981827873, 608981827891, 608981828023, 608981828029, 608981828111, 608981828129, 608981836363, 608981836391, 608981836481
Offset: 1
Keywords
Links
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..84323
- A. Alahmadi, M. Planat, and P. Solé, Chebyshev's bias and generalized Riemann hypothesis, HAL Id: hal-00650320.
- C. Bays and R. H. Hudson, Details of the first region of integers x with pi_{3,2} (x) < pi_{3,1}(x), Math. Comp. 32 (1978), 571-576
- C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.
- M. Deléglise, P. Dusart, and X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp. 1565-1575.
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
Comments