Sergei D. Shchebetov has authored 25 sequences. Here are the ten most recent ones:
A353185
Numbers which require exactly 289 'Reverse and Add' steps to reach a palindrome.
Original entry on oeis.org
10037000230509917799950, 10037000240508917799950, 10037000250507917799950, 10037000260506917799950, 10037000270505917799950, 10037000280504917799950, 10037000290503917799950, 10037000330509817799950, 10037000340508817799950
Offset: 1
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..10000
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80, No. 3, 2012, 375-384.
- Sergei D. Shchebetov, 9031680 terms (zipped file)
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281506,
A281507,
A326414.
A326414
Numbers which require exactly 288 'Reverse and Add' steps to reach a palindrome.
Original entry on oeis.org
12000700000025339936491, 12000700001015339936491, 12000700002005339936491, 12000700010024339936491, 12000700011014339936491, 12000700012004339936491, 12000700020023339936491, 12000700021013339936491, 12000700022003339936491, 12000700030022339936491
Offset: 1
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975).
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..10000
- Jason Doucette, World Records
- Yutaka Nishiyama, Numerical Palindromes and the 196 Problem, International Journal of Pure and Applied Mathematics, Volume 80, No. 3, 2012, 375-384.
- Sergei D. Shchebetov, 19353600 terms (zipped file)
- R. Styer, The Palindromic Conjecture and the Fibonacci Sequence, Villanova University, 1986, 1-11.
- C. W. Trigg, Palindromes by Addition, Mathematics Magazine, 40 (1967), 26-28.
- C. W. Trigg, More on Palindromes by Reversal-Addition, Mathematics Magazine, 45 (1972), 184-186.
- Wikipedia, Lychrel Number
- 196 and Other Lychrel Numbers, 196 and Lychrel Number
- Index entries for sequences related to Reverse and Add!
Cf.
A023109,
A033672,
A065198,
A065199,
A065320,
A065321,
A065322,
A065323,
A065324,
A065325,
A065326,
A065327,
A070743,
A072216,
A072217,
A072218,
A281301,
A281390,
A281506,
A281507.
Deleted an erroneous comment that said that the sequence was finite. -
N. J. A. Sloane, Jun 23 2022
A298821
Primes p for which pi_{24,19}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
706866045116113, 706866045126361, 706866045126697, 706866045126907, 706866045128377, 706866045128563, 706866045128953, 706866045129163, 706866045129403, 706866045130057, 706866045130153, 706866045130459, 706866045130723, 706866045130771, 706866045131107, 706866045155113, 706866045155899, 706866045156043, 706866045156409, 706866045156499
Offset: 1
- Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
A298820
Values of n for which pi_{24,19}(p_n) - pi_{24,1}(p_n) = -1, where p_n is the n-th prime and pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
21317046795798, 21317046796093, 21317046796102, 21317046796104, 21317046796154, 21317046796159, 21317046796172, 21317046796185, 21317046796193, 21317046796208, 21317046796212, 21317046796221, 21317046796226, 21317046796229, 21317046796240, 21317046796968, 21317046796986, 21317046796992, 21317046797002, 21317046797007
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
A297450
Primes p for which pi_{24,17}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
617139273158713, 617139273159121, 617139273159337, 617139273163729, 617139273163793, 617139273165889, 617139273166121, 617139273167057, 617139273169273, 617139273169513, 617139273169729, 617139273170137, 617139273170401, 617139273171217, 617139273206009, 617139273206993, 617139273207449, 617139273207929, 617139273208001, 617139273504913
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
A297449
Values of n for which pi_{24,17}(p_n) - pi_{24,1}(p_n) = -1, where p_n is the n-th prime and pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
18687728175380, 18687728175387, 18687728175395, 18687728175515, 18687728175520, 18687728175587, 18687728175592, 18687728175626, 18687728175698, 18687728175707, 18687728175715, 18687728175726, 18687728175738, 18687728175762, 18687728176789, 18687728176820, 18687728176831, 18687728176844, 18687728176846, 18687728185530
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
A297447
Values of n for which pi_{8,5}(p_n) - pi_{8,1}(p_n) = -1, where p_n is the n-th prime and pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
30733704, 30733708, 30733714, 30733726, 30733729, 30733733, 30733743, 30733762, 30733764, 30733777, 30733781, 30733796, 30733853, 30733857, 30733860, 30733866, 30733880, 30733887, 30733890, 30734262
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- C. Bays and R. H. Hudson, Numerical and graphical description of all axis crossing regions for moduli 4 and 8 which occur before 10^12, International Journal of Mathematics and Mathematical Sciences, vol. 2, no. 1, pp. 111-119, 1979.
- C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp.54-76.
- M. Deléglise, P. Dusart, and X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp.1565-1575.
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
Cf.
A007350,
A007351,
A038691,
A051024,
A051025,
A066520,
A096628,
A096447,
A096448,
A199547,
A275939,
A295354,
A379643,
A379989.
-
from sympy import nextprime; p, r1, r5 = 1, 0, 0
for n in range(1, 30734263):
p = nextprime(p); r = p%8
if r == 1: r1 += 1
elif r == 5: r5 += 1
if r in {1, 5} and r1 == r5 + 1: print(n, end = ', ') # Ya-Ping Lu, Jan 08 2025
A297357
Primes p for which pi_{12,7}(p) - pi_{12,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
27489101529529, 27489101529679, 27489101529727, 27489101529847, 27489101529991, 27489101530159, 27489101530699, 27489101530747, 27489101534611, 27489101535037, 27489101535229, 27489101536843, 27489101537101, 27489101537281, 27489101537761, 27489101537827, 27489101538007, 27489101538163, 27489101539591, 27489101539723
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..55596
- C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- M. Rubinstein and P. Sarnak, Chebyshev's bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect
A297356
Values of n for which pi_{12,7}(p_n) - pi_{12,1}(p_n) = -1, where p_n is the n-th prime and pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
919096512484, 919096512490, 919096512492, 919096512496, 919096512500, 919096512504, 919096512517, 919096512519, 919096512648, 919096512655, 919096512662, 919096512718, 919096512725, 919096512729, 919096512741, 919096512744, 919096512747, 919096512753, 919096512798, 919096512802
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..55596
- C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- M. Rubinstein and P. Sarnak, Chebyshev's bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect
A297355
Primes p for which pi_{12,5}(p) - pi_{12,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
25726067172577, 25726067172857, 25726067173321, 25726067173441, 25726067174389, 25726067174461, 25726067174653, 25726067174761, 25726067175961, 25726067176549, 25726067176669, 25726067176993, 25726067177149, 25726067177429, 25726067177449, 25726067177593, 25726067177617, 25726067177689, 25726067177801, 25726067178013
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..8399
- C. Bays and R. H. Hudson, Details of the first region of integers x with pi_{3,2} (x) < pi_{3,1}(x), Math. Comp. 32 (1978), 571-576.
- C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- M. Rubinstein and P. Sarnak, Chebyshev's bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect
Comments