A297450
Primes p for which pi_{24,17}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
617139273158713, 617139273159121, 617139273159337, 617139273163729, 617139273163793, 617139273165889, 617139273166121, 617139273167057, 617139273169273, 617139273169513, 617139273169729, 617139273170137, 617139273170401, 617139273171217, 617139273206009, 617139273206993, 617139273207449, 617139273207929, 617139273208001, 617139273504913
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
A298820
Values of n for which pi_{24,19}(p_n) - pi_{24,1}(p_n) = -1, where p_n is the n-th prime and pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
21317046795798, 21317046796093, 21317046796102, 21317046796104, 21317046796154, 21317046796159, 21317046796172, 21317046796185, 21317046796193, 21317046796208, 21317046796212, 21317046796221, 21317046796226, 21317046796229, 21317046796240, 21317046796968, 21317046796986, 21317046796992, 21317046797002, 21317046797007
Offset: 1
- Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
A298821
Primes p for which pi_{24,19}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
Original entry on oeis.org
706866045116113, 706866045126361, 706866045126697, 706866045126907, 706866045128377, 706866045128563, 706866045128953, 706866045129163, 706866045129403, 706866045130057, 706866045130153, 706866045130459, 706866045130723, 706866045130771, 706866045131107, 706866045155113, 706866045155899, 706866045156043, 706866045156409, 706866045156499
Offset: 1
- Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000
- A. Granville and G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
- Richard H. Hudson and Carter Bays, The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
- M. Rubinstein and P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
- Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
Showing 1-3 of 3 results.
Comments