cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297047 Number of edge covers in the n-wheel graph.

Original entry on oeis.org

0, 2, 10, 41, 154, 562, 2023, 7240, 25842, 92129, 328270, 1169390, 4165231, 14835316, 52837774, 188186161, 670237602, 2387090906, 8501757271, 30279468752, 107841945274, 384084812929, 1367938393414, 4871984909782, 17351831683935, 61799465142812, 220102059235510
Offset: 1

Views

Author

Eric W. Weisstein, Dec 24 2017

Keywords

Comments

Extended to a(1)-a(3) using the formula/recurrence.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 4*a(n-1) - 5*a(n-3) - 2*a(n-4),a(1)=0,a(2)=2,a(3)=10,a(4)=41},a(n),remember):
    map(f, [$1..30]); # Robert Israel, Dec 26 2017
  • Mathematica
    Table[I^(n - 1) 2^((n + 1)/2) ChebyshevT[n - 1, -3 I/(2 Sqrt[2])] - LucasL[n - 1, 1], {n, 20}]
    LinearRecurrence[{4, 0, -5, -2}, {0, 2, 10, 41}, 20]
    CoefficientList[Series[x (2 + 2 x + x^2)/(1 - 4 x + 5 x^3 + 2 x^4), {x, 0, 20}], x]
  • PARI
    first(n) = Vec(x^2*(2 + 2*x + x^2)/(1 - 4*x + 5*x^3 + 2*x^4) + O(x^(n+1)), -n) \\ Iain Fox, Dec 24 2017

Formula

a(n) = A206776(n-1) - A000032(n-1).
a(n) = 4*a(n-1) - 5*a(n-3) - 2*a(n-4).
G.f.: x^2*(2+2*x+x^2) / ( (x^2+x-1)*(2*x^2+3*x-1) ).
a(n) = 2^(-2-n)*(2*(1-sqrt(5))^n*(1+sqrt(5)) - 2*(-1+sqrt(5))*(1+sqrt(5))^n - 3*(3-sqrt(17))^n-sqrt(17)*(3-sqrt(17))^n - 3*(3+sqrt(17))^n+sqrt(17)*(3+sqrt(17))^n). - Colin Barker, Dec 28 2017