A297077 Number of distinct row and column sums for n X n (0, 1)-matrices.
1, 2, 15, 328, 16145, 1475856, 219682183, 48658878080, 15047189968833, 6199170628499200, 3283463201858585471, 2174417430787021427712, 1760550428764505109190225, 1711145965399957937819322368, 1966168979042910307305159432375, 2636533865690624357354875499216896
Offset: 0
Keywords
Examples
For n = 3, both of the following 3 X 3 (0,1)-matrices have identical row and column sums: [1 0 1] [1 1 0] [0 1 0] and [0 1 0] [0 1 0] [0 0 1] have row sums of [2 1 1] and column sums of [1 2 1]. So ([2 1 1], [1 2 1]) is one of the 328 possible row/column sums for a 3 X 3 matrix.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Mathematics Stack Exchange, Spanning forests of bipartite graphs and distinct row/column sums of binary matrices
- Lars Nagel & Tim Süß, Computing the Probability for Data Loss in Two-Dimensional Parity RAIDs, 2017 13th European Dependable Computing Conference (EDCC), 58-65.
- Rebecca J. Stones, Computing the number of h-edge spanning forests in complete bipartite graphs, Discrete Mathematics & Theoretical Computer Science, vol. 16, no. 1, pp. 313-326, 2014.
Crossrefs
Programs
-
Mathematica
{1}~Join~Array[Length@ Union@ Map[Total /@ {Transpose@ #, #} &, Tuples[{0, 1}, {#, #}]] &, 4] (* Michael De Vlieger, Jan 11 2018 *)
Extensions
Terms a(6) and beyond from Andrew Howroyd, Oct 29 2019
Comments