A297148 Numbers whose base-10 digits d(m), d(m-1),..., d(0) have m=0 or else d(i) = d(i+1) for some i in {0,1,...,m-1}.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 133, 144, 155, 166, 177, 188, 199, 200, 211, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 233, 244, 255, 266, 277, 288, 299, 300
Offset: 1
Examples
Base-10 digits of 65536: 6,5,5,3,6, so that 65536 is in the sequence.
Programs
-
Maple
read("transforms") : isA297148 := proc(n) local dgs,ud; dgs := convert(n,base,10) ; if nops(dgs) < 2 then return true; end if; if 0 in DIFF(dgs) then true; else false; end if; end proc: for n from 1 to 300 do if isA297148(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 18 2018
-
Mathematica
a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300; b = 10; t = Table[a[n, b], {n, 1, 10*z}]; u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297146 *) v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297147 *) Complement[Range[z], Union[u, v]] (* A297148 *)
Comments