cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297155 a(1) = a(2) = 0, after which, a(n) = 1+a(n/2) if n is of the form 4k+2, otherwise a(n) = a(A252463(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2017

Keywords

Comments

Consider the binary tree illustrated in A005940: If we start from any vertex containing n, computing successive iterations of A252463 until 1 is reached, a(n) gives the number of the numbers of the form 4k+2 (with k >= 1) encountered on the path (i.e., excluding 2 from the count but including the starting n if it is of the form 4k+2).

Crossrefs

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A297155(n) = if(n<=2,0,if(n%2,A297155(A064989(n)),(2==(n%4))+A297155(n/2)));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A297155 n) (cond ((<= n 2) 0) ((= 2 (modulo n 4)) (+ 1 (A297155 (/ n 2)))) (else (A297155 (A252463 n)))))

Formula

a(n) = A252464(n) - A297113(n).
a(n) = A037800(A156552(n)).
a(n) = A001221(n) - 1 for all n > 1. - Velin Yanev, Mar 26 2019