cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A324190 Number of distinct values A297167 obtains over the divisors > 1 of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 4, 2, 2, 1, 4, 2, 2, 3, 4, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 5, 1, 3, 1, 4, 3, 2, 1, 5, 2, 3, 2, 4, 1, 4, 2, 6, 2, 2, 1, 4, 1, 2, 4, 6, 2, 3, 1, 4, 2, 3, 1, 5, 1, 2, 3, 4, 2, 3, 1, 6, 4, 2, 1, 5, 2, 2, 2, 6, 1, 4, 2, 4, 2, 2, 2, 6, 1, 3, 4, 5, 1, 3, 1, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Comments

Number of distinct values of the sum {excess of d} + {the index of the largest prime factor of d} (that is, A046660(d) + A061395(d)) that occurs over all divisors d > 1 of n.
Number of distinct values A297112 obtains over the divisors > 1 of n; a(1) = 0.

Crossrefs

Programs

  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
    A324190(n) = #Set(apply(A297167, select(d -> d>1,divisors(n))));

Formula

a(n) = A001221(A324202(n)).
a(n) >= A324120(n).
a(n) >= A001222(n) >= A001221(n). [See A324179 and A324192 for differences]
a(n) <= A000005(n)-1. [See A324191 for differences]
For all primes p, a(p^k) = k.

A324191 Number of divisors of n minus the number of distinct values that A297167 obtains over the divisors > 1 of n: a(n) = A000005(n) - A324190(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 3, 1, 5, 1, 2, 3, 2, 1, 5, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 7, 1, 2, 3, 2, 2, 5, 1, 4, 1, 2, 1, 7, 2, 2, 2, 2, 1, 8, 2, 2, 2, 2, 2, 6, 1, 3, 2, 4, 1, 5, 1, 2, 5
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Comments

a(p^k) = 1 for all primes p and all exponents k >= 0, because with prime powers there are k divisors larger than 1 and A297167 obtains a distinct value for each one of them.

Crossrefs

Programs

Formula

a(n) = A000005(n) - A324190(n).

A324202 a(n) = A046523(A332461(n)), where A332461(n) = Product_{d|n, d>1} prime(1+A297167(d)).

Original entry on oeis.org

1, 2, 2, 6, 2, 12, 2, 30, 6, 12, 2, 120, 2, 12, 12, 210, 2, 180, 2, 420, 12, 12, 2, 2520, 6, 12, 30, 420, 2, 720, 2, 2310, 12, 12, 12, 7560, 2, 12, 12, 9240, 2, 720, 2, 420, 120, 12, 2, 138600, 6, 180, 12, 420, 2, 6300, 12, 60060, 12, 12, 2, 151200, 2, 12, 420, 30030, 12, 720, 2, 420, 12, 720, 2, 831600, 2, 12, 180, 420, 12, 720, 2, 360360
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Crossrefs

Programs

  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
    A324202(n) = A046523(factorback(apply(x -> prime(1+x),apply(A297167, select(d -> d>1,divisors(n))))));

Formula

a(n) = A046523(A332461(n)).
A001221(a(n)) = A324190(n).
A001222(a(n)) = A032741(n).

A324179 Number of distinct values A297167 obtains over divisors > 1 of n, minus number of prime factors of n counted with multiplicity: a(n) = A324190(n) - A001222(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Comments

a(n) is zero for all prime powers (A000961), but also for many other numbers.

Examples

			Divisors of 56 larger than 1 are [2, 4, 7, 8, 14, 28, 56]. When A297167 is applied to each, one obtains values: [0, 1, 3, 2, 3, 4, 5], of which 6 values are distinct (as one of them, 3, occurs twice). On the other hand, 56 = 2 * 2 * 2 * 7 has four prime factors in total, thus a(56) = 6 - 4 = 2.
		

Crossrefs

Programs

Formula

a(n) = A324190(n) - A001222(n).
a(n) <= A324192(n).

A324192 Number of distinct values A297167 obtains over divisors > 1 of n, minus number of distinct prime factors of n: a(n) = A324190(n) - A001221(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 2, 0, 2, 0, 4, 0, 0, 0, 1, 0, 0, 2, 5, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 1, 2, 0, 0, 0, 4, 3, 0, 0, 2, 0, 0, 0, 4, 0, 1, 0, 2, 0, 0, 0, 4, 0, 1, 2, 3, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A324190(n) - A001221(n).
a(n) >= A324179(n).

A324193 a(1) = 0; for n > 1, a(n) = Product_{d|n, d>1, dA297167(d)).

Original entry on oeis.org

0, 1, 1, 2, 1, 6, 1, 6, 3, 10, 1, 54, 1, 14, 15, 30, 1, 90, 1, 150, 21, 22, 1, 1350, 5, 26, 15, 294, 1, 2250, 1, 210, 33, 34, 35, 6750, 1, 38, 39, 5250, 1, 6174, 1, 726, 375, 46, 1, 66150, 7, 350, 51, 1014, 1, 3150, 55, 16170, 57, 58, 1, 1181250, 1, 62, 735, 2310, 65, 23958, 1, 1734, 69, 17150, 1, 1653750, 1, 74, 525, 2166, 77, 39546, 1, 404250, 105
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Comments

An auxiliary sequence for defining A300827, which is the restricted growth sequence transform of this sequence. A324202 is a similar sequence, but is not limited to the proper divisors of n, and in contrast to this, also finds the least prime signature representative (A046523) of the product formed.

Crossrefs

Cf. also A324202.

Programs

  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
    A324193(n) = { my(m=1); if(n<=2, n-1, fordiv(n, d, if((d>1)&(dA297167(d)))); (m)); };

Formula

a(1) = 0; for n > 1, a(n) = Product_{d|n, d>1, dA297167(d)).
For all n > 0:
A001222(a(n)) = A000005(n)-2.
A001221(A007913(a(n))) = A324120(n).
A087207(A007913(a(n))) = A324180(n).

A324537 a(n) = A003557(k), where k = Product_{d|n, d>2} prime(A297167(d)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 5, 3, 1, 1, 6, 1, 3, 5, 7, 1, 12, 1, 11, 1, 5, 1, 54, 1, 1, 7, 13, 5, 36, 1, 17, 11, 9, 1, 250, 1, 7, 9, 19, 1, 60, 1, 15, 13, 11, 1, 30, 7, 5, 17, 23, 1, 1620, 1, 29, 5, 1, 11, 686, 1, 13, 19, 375, 1, 540, 1, 31, 15, 17, 7, 2662, 1, 45, 1, 37, 1, 3500, 13, 41, 23, 7, 1, 2430, 11, 19, 29, 43, 17, 420, 1, 35, 7, 75, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2019

Keywords

Crossrefs

Cf. A000961 (positions of ones), A003557, A297167, A300827, A324191, A324193, A324202, A324538.

Programs

  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A324537(n) = { my(m=1); fordiv(n, d, if(d>2, m *= prime(A297167(d)))); A003557(m); };

Formula

A001222(a(n)) = A324191(n) - 1.

A252464 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A064989(2n+1)); also binary width of terms of A156552 and A243071.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 4, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 5, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 5, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

a(n) tells how many iterations of A252463 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A005940 and A163511.
Similarly for A253553 in trees A253563 and A253565. - Antti Karttunen, Apr 14 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the inner lining of the integer partition with Heinz number n, which is also the size of the largest hook of the same partition. For example, the partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
and largest hook
  o o o o o o
  o
  o
both of which have size 8, so a(715) = 8.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]]-1,{n,100}] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = (bigomega(n) + A061395(n) - 1); \\ Antti Karttunen, Apr 14 2019
    
  • Python
    from sympy import primepi, primeomega, primefactors
    def A252464(n): return primeomega(n)+primepi(max(primefactors(n)))-1 if n>1 else 0 # Chai Wah Wu, Jul 17 2023

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A252463(n)).
a(n) = A029837(1+A243071(n)). [a(n) = binary width of terms of A243071.]
a(n) = A029837(A005941(n)) = A029837(1+A156552(n)). [Also binary width of terms of A156552.]
Other identities. For all n >= 1:
a(A000040(n)) = n.
a(A001248(n)) = n+1.
a(A030078(n)) = n+2.
And in general, a(prime(n)^k) = n+k-1.
a(A000079(n)) = n. [I.e., a(2^n) = n.]
For all n >= 2:
a(n) = A001222(n) + A061395(n) - 1 = A001222(n) + A252735(n) = A061395(n) + A252736(n) = 1 + A252735(n) + A252736(n).
a(n) = A325134(n) - 1. - Gus Wiseman, Apr 02 2019
From Antti Karttunen, Apr 14 2019: (Start)
a(1) = 0; for n > 1: a(n) = 1 + a(A253553(n)).
a(n) = A001221(n) + A297167(n) = A297113(n) + A297155(n).
(End).

A297113 a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 4, 4, 5, 9, 4, 4, 6, 4, 5, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 5, 13, 4, 14, 6, 4, 9, 15, 5, 5, 4, 7, 7, 16, 4, 5, 6, 8, 10, 17, 4, 18, 11, 5, 6, 6, 5, 19, 8, 9, 4, 20, 5, 21, 12, 4, 9, 5, 6, 22, 6, 5, 13, 23, 5, 7, 14, 10, 7, 24, 4, 6, 10, 11, 15, 8, 6, 25
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2017

Keywords

Comments

From Gus Wiseman, Apr 06 2019: (Start)
Also the number of squares in the Young diagram of the integer partition with Heinz number n that are graph-distance 1 from the lower-right boundary, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (6,5,5,3) with Heinz number 7865 has diagram
o o o o o o
o o o o o
o o o o o
o o o
with inner rim
o
o
o o
o o o
of size 7, so a(7867) = 7.
(End)

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,PrimePi[FactorInteger[n][[-1,1]]]+PrimeOmega[n]-PrimeNu[n]],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A297113(n) = if(n<=2,n-1,if(n%2,1+A297113(A064989(n)), !(n%4)+A297113(n/2)));
    
  • PARI
    \\ More complex way, after Moebius transform:
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A297112(n) = sumdiv(n,d,moebius(n/d)*A156552(d));
    A297113(n) = if(1==n,0,1+valuation(A297112(n),2));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A297113 n) (cond ((<= n 2) (- n 1)) ((= 2 (modulo n 4)) (A297113 (/ n 2))) (else (+ 1 (A297113 (A252463 n))))))

Formula

a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)) .
For n > 1, a(n) = A001511(A297112(n)), where A297112(n) = Sum_{d|n} moebius(n/d)*A156552(d).
a(n) = A252464(n) - A297155(n).
For n > 1, a(n) = 1+A033265(A156552(n)) = 1+A297167(n) = A046660(n) + A061395(n). - Last two sums added by Antti Karttunen, Sep 02 2018
Other identities. For all n >= 1:
a(A000040(n)) = n. [Each n occurs for the first time at the n-th prime.]

A300827 Lexicographically earliest sequence such that a(i) = a(j) => A324193(i) = A324193(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 16, 17, 9, 18, 2, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 35, 36, 2, 37, 38, 39, 40, 41, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 55, 56, 2, 57, 58, 59, 2, 60, 61, 62, 63, 64, 2, 65, 66, 67
Offset: 1

Views

Author

Antti Karttunen, Mar 13 2018

Keywords

Comments

Apart from primes, the sequence contains duplicate values at points p*q and p^3, where p*q are the product of two successive primes, with p < q (sequences A006094, A030078). Question: are there any other cases where a(x) = a(y), with x < y ?
The reason why this is not equal to A297169: Even though A297112 contains only powers of two after the initial zero, as A297112(n) = 2^A033265(A156552(d)) for n > 1, and A297168(n) is computed as Sum_{d|n, dA297112(d), still a single 1-bit in binary expansion of A297168(n) might be formed as a sum of several terms of A297112(d), i.e., could be born of carries.
From Antti Karttunen, Feb 28 2019: (Start)
A297168(n) = Sum_{d|n, dA297112(d) will not produce any carries (in base-2) if and only if n is a power of prime. Only in that case the number of summands (A000005(n)-1) is equal to the number of prime factors counted with multiplicity, A001222(n) = A000120(A156552(n)). (A notable subset of such numbers is A324201, numbers that are mapped to even perfect numbers by A156552). Precisely because there are so few points with duplicate values (apart from primes), this sequence is not particularly good for filtering other sequences, because the number of false positives is high. Any of the related sequences like A324203, A324196, A324197 or A324181 might work better in that respect. In any case, the following implications hold (see formula section of A324193 for the latter): (End)
For all i, j:
a(i) = a(j) => A297168(i) = A297168(j). (The same holds for A297169).
a(i) = a(j) => A324181(i) = A324181(j) => A324120(i) = A324120(j).

Examples

			For n = 15, with proper divisors 3 and 5, we have f(n) = prime(1+A297167(3)) * prime(1+A297167(5)) = prime(2)*prime(3) = 3*5 = 15.
For n = 27, with proper divisors 3 and 9, we have f(n) = prime(1+A297167(3)) * prime(1+A297167(9)) = prime(2)*prime(3) = 3*5 = 15.
Because f(15) = f(27), the restricted growth sequence transform allots the same number (in this case 9) for both, so a(15) = a(27) = 9.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) -1));
    Aux300827(n) = { my(m=1); if(n<=2, n-1, fordiv(n,d,if((d>1)&(dA297167(d)))); (m)); };
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300827(n))),"b300827.txt");

Formula

Restricted growth sequence transform of sequence f, defined as f(1) = 0, f(2) = 1, and for n > 2, f(n) = Product_{d|n, 1A297167(d)).
a(p) = 2 for all primes p.
a(A006094(n)) = a(A030078(n)), for all n >= 1.

Extensions

Name changed by Antti Karttunen, Feb 21 2019
Showing 1-10 of 25 results. Next