A297314 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 or 2 neighboring 1s.
1, 2, 1, 4, 7, 1, 7, 23, 21, 1, 12, 66, 117, 65, 1, 21, 207, 497, 609, 200, 1, 37, 654, 2577, 3808, 3159, 616, 1, 65, 2049, 13937, 35476, 29212, 16389, 1897, 1, 114, 6422, 72541, 340825, 484808, 223995, 85041, 5842, 1, 200, 20119, 375054, 2997197, 8273245
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..1. .1..1..0..0. .1..1..1..0. .0..1..0..0. .0..0..1..0 ..1..0..0..0. .0..0..0..1. .0..0..1..0. .1..1..1..1. .1..1..0..0 ..0..1..0..1. .0..0..1..0. .0..1..1..0. .0..0..0..1. .0..0..0..1 ..1..1..1..0. .0..0..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..0 ..0..0..0..0. .0..1..1..1. .0..1..1..1. .0..0..1..1. .1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..447
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) +a(n-3)
k=3: a(n) = 3*a(n-1) +11*a(n-2) +3*a(n-3) -6*a(n-4)
k=4: [order 8] for n>9
k=5: [order 12] for n>14
k=6: [order 22] for n>25
k=7: [order 35] for n>39
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
n=2: [order 9]
n=3: [order 23]
n=4: [order 61]
Comments