cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297314 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 or 2 neighboring 1s.

Original entry on oeis.org

1, 2, 1, 4, 7, 1, 7, 23, 21, 1, 12, 66, 117, 65, 1, 21, 207, 497, 609, 200, 1, 37, 654, 2577, 3808, 3159, 616, 1, 65, 2049, 13937, 35476, 29212, 16389, 1897, 1, 114, 6422, 72541, 340825, 484808, 223995, 85041, 5842, 1, 200, 20119, 375054, 2997197, 8273245
Offset: 1

Views

Author

R. H. Hardin, Dec 28 2017

Keywords

Comments

Table starts
.1.....2.......4.........7..........12............21..............37
.1.....7......23........66.........207...........654............2049
.1....21.....117.......497........2577.........13937...........72541
.1....65.....609......3808.......35476........340825.........2997197
.1...200....3159.....29212......484808.......8273245.......121339476
.1...616...16389....223995.....6623719.....200646607......4893232934
.1..1897...85041...1717882....90535227....4869858862....197589351469
.1..5842..441225..13174266..1237278512..118156684121...7976248015498
.1.17991.2289339.101033369.16909630099.2867120332406.322003901582689

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .1..1..0..0. .1..1..1..0. .0..1..0..0. .0..0..1..0
..1..0..0..0. .0..0..0..1. .0..0..1..0. .1..1..1..1. .1..1..0..0
..0..1..0..1. .0..0..1..0. .0..1..1..0. .0..0..0..1. .0..0..0..1
..1..1..1..0. .0..0..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..0
..0..0..0..0. .0..1..1..1. .0..1..1..1. .0..0..1..1. .1..0..1..1
		

Crossrefs

Column 2 is A218836.
Row 1 is A005251(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) +a(n-3)
k=3: a(n) = 3*a(n-1) +11*a(n-2) +3*a(n-3) -6*a(n-4)
k=4: [order 8] for n>9
k=5: [order 12] for n>14
k=6: [order 22] for n>25
k=7: [order 35] for n>39
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
n=2: [order 9]
n=3: [order 23]
n=4: [order 61]