A297321 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j*x^j)^k.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 7, 0, 1, 5, 14, 28, 28, 15, 0, 1, 6, 20, 48, 69, 64, 25, 0, 1, 7, 27, 75, 137, 174, 133, 43, 0, 1, 8, 35, 110, 240, 380, 413, 266, 64, 0, 1, 9, 44, 154, 387, 726, 998, 933, 513, 120, 0, 1, 10, 54, 208, 588, 1266, 2075, 2488, 2046, 1000, 186, 0
Offset: 0
Examples
G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 20)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 107*k + 42)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 335*k^2 + 810*k + 624)*x^5 + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 2, 5, 9, 14, 20, ... 0, 5, 14, 28, 48, 75, ... 0, 7, 28, 69, 137, 240, ... 0, 15, 64, 174, 380, 726, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 100 antidiagonals, flattened
Crossrefs
Columns k=0..32 give A000007, A022629, A022630, A022631, A022632, A022633, A022634, A022635, A022636, A022637, A022638, A022639, A022640, A022641, A022642, A022643, A022644, A022645, A022646, A022647, A022648, A022649, A022650, A022651, A022652, A022653, A022654, A022655, A022656, A022657, A022658, A022659, A022660.
Main diagonal gives A297322.
Antidiagonal sums give A299164.
Programs
-
Mathematica
Table[Function[k, SeriesCoefficient[Product[(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Formula
G.f. of column k: Product_{j>=1} (1 + j*x^j)^k.