A297362 Numbers k such that (2^ord(2, k) - 1)/k is prime, where ord(2, k) is the multiplicative order of 2 (mod k).
5, 9, 21, 23, 33, 47, 51, 73, 85, 89, 93, 129, 167, 217, 223, 263, 315, 341, 381, 585, 819, 1057, 1365, 3591, 3855, 4681, 4871, 5461, 6141, 6223, 6719, 7487, 8193, 11447, 13107, 13367, 13797, 14329, 16513, 18631, 21845, 24573, 25575, 26431, 33825, 37449
Offset: 1
Keywords
Examples
5 is in the sequence since ord(2, 5) = 4 and (2^4 - 1)/5 = 3 is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..64
Programs
-
Mathematica
aQ[n_] := PrimeQ[(2^MultiplicativeOrder[2, n] - 1)/n]; Select[Range[10000],aQ]
-
PARI
is(n) = n%2 && isprime((2^znorder(Mod(2, n))-1)/n); \\ Amiram Eldar, Aug 26 2023
Comments