A297363 Numbers k such that (3^ord(3, k) - 1)/k is prime, where ord(3, k) is the multiplicative order of 3 (mod k).
1, 4, 13, 16, 22, 40, 46, 56, 94, 104, 121, 160, 364, 526, 862, 968, 1093, 1312, 1514, 3146, 3194, 3280, 3742, 4376, 5368, 7280, 7702, 8744, 9841, 28418, 29524, 40880, 69022, 75920, 88573, 106288, 157394
Offset: 1
Examples
46 is in the sequence since ord(3, 46) = 11 and (3^11 - 1)/46 = 3851 is prime.
Programs
-
Mathematica
aQ[n_] := PrimeQ[(3^MultiplicativeOrder[3, n] - 1)/n]; Select[ Range[10000], aQ ]
-
PARI
isok(n) = (gcd(n,3) == 1) && isprime((3^znorder(Mod(3, n)) - 1)/n); \\ Michel Marcus, Dec 30 2017
Comments