cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297388 Number of pairs (p,q) of partitions such that q is a partition of n and p <= q (diagram containment).

Original entry on oeis.org

1, 2, 6, 13, 30, 58, 120, 219, 413, 730, 1296, 2201, 3766, 6206, 10241, 16500, 26502, 41748, 65600, 101417, 156264, 237741, 360146, 539838, 806030, 1192365, 1756766, 2568418, 3739724, 5408247, 7791474, 11156601, 15916288, 22585112, 31933166, 44932450, 63010688
Offset: 0

Views

Author

Richard Stanley, Dec 29 2017

Keywords

Comments

For fixed q, the number of p is given by a determinant due to MacMahon (the case mu=empty set and n=1 of Exercise 3.149 of the reference below).

Examples

			For n = 2 the six pairs are (empty set,2), (1,2), (2,2), (empty set,11), (1,11), (11,11).
		

References

  • R. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge Univ. Press, 2012.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0 or i=1, 1+
          `if`(t=0, 0, n), b(n, i-1, min(i-1, t))+ add(
           b(n-i, min(i, n-i), min(j, n-i)), j=0..t))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 29 2017
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, 1 + If[t == 0, 0, n], b[n, i - 1, Min[i - 1, t]] + Sum[b[n - i, Min[i, n - i], Min[j, n - i]], {j, 0, t}]];
    a[n_] := b[n, n, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

a(n) = A000041(n) + Sum_{k=1..n} A259478(n,k). - Alois P. Heinz, Jan 10 2018