A297388 Number of pairs (p,q) of partitions such that q is a partition of n and p <= q (diagram containment).
1, 2, 6, 13, 30, 58, 120, 219, 413, 730, 1296, 2201, 3766, 6206, 10241, 16500, 26502, 41748, 65600, 101417, 156264, 237741, 360146, 539838, 806030, 1192365, 1756766, 2568418, 3739724, 5408247, 7791474, 11156601, 15916288, 22585112, 31933166, 44932450, 63010688
Offset: 0
Examples
For n = 2 the six pairs are (empty set,2), (1,2), (2,2), (empty set,11), (1,11), (11,11).
References
- R. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge Univ. Press, 2012.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, 1+ `if`(t=0, 0, n), b(n, i-1, min(i-1, t))+ add( b(n-i, min(i, n-i), min(j, n-i)), j=0..t)) end: a:= n-> b(n$3): seq(a(n), n=0..40); # Alois P. Heinz, Dec 29 2017
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, 1 + If[t == 0, 0, n], b[n, i - 1, Min[i - 1, t]] + Sum[b[n - i, Min[i, n - i], Min[j, n - i]], {j, 0, t}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Comments