A297395 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 neighboring 1.
1, 2, 1, 3, 5, 1, 4, 9, 9, 1, 6, 13, 19, 20, 1, 9, 33, 37, 57, 41, 1, 13, 69, 127, 126, 139, 85, 1, 19, 121, 323, 700, 385, 369, 178, 1, 28, 253, 763, 2569, 3175, 1243, 963, 369, 1, 41, 529, 2121, 7779, 14940, 15541, 3924, 2489, 769, 1, 60, 1013, 5557, 31081, 58901, 99682
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..1..1..0. .0..1..0..0. .0..0..1..1. .0..0..0..0 ..0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0 ..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..1 ..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..1..0..0 ..0..0..1..1. .0..0..1..0. .1..1..0..0. .0..0..0..0. .1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..420
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4)
k=3: a(n) = a(n-1) +4*a(n-2) +2*a(n-3) -4*a(n-4)
k=4: a(n) = a(n-1) +6*a(n-2) +4*a(n-3) -3*a(n-4) -a(n-5) -2*a(n-6) -a(n-7)
k=5: [order 20]
k=6: [order 25]
k=7: [order 55]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3)
n=2: a(n) = a(n-1) +4*a(n-3)
n=3: a(n) = a(n-1) +a(n-2) +8*a(n-3) +a(n-4) -2*a(n-6)
n=4: [order 8]
n=5: [order 21]
n=6: [order 31]
n=7: [order 69]
Comments