cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297395 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 neighboring 1.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 9, 9, 1, 6, 13, 19, 20, 1, 9, 33, 37, 57, 41, 1, 13, 69, 127, 126, 139, 85, 1, 19, 121, 323, 700, 385, 369, 178, 1, 28, 253, 763, 2569, 3175, 1243, 963, 369, 1, 41, 529, 2121, 7779, 14940, 15541, 3924, 2489, 769, 1, 60, 1013, 5557, 31081, 58901, 99682
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2017

Keywords

Comments

Table starts
.1...2....3.....4.......6........9........13.........19...........28
.1...5....9....13......33.......69.......121........253..........529
.1...9...19....37.....127......323.......763.......2121.........5557
.1..20...57...126.....700.....2569......7779......31081.......117084
.1..41..139...385....3175....14940.....58901.....325922......1616869
.1..85..369..1243...15541....99682....514945....3977868.....27131403
.1.178..963..3924...74736...640562...4279111...46261441....428200086
.1.369.2489.12477..358341..4101278..35870939..540319235...6780786267
.1.769.6523.39625.1729617.26607999.302197213.6362528482.108762242579

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..1..1..0. .0..1..0..0. .0..0..1..1. .0..0..0..0
..0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..1
..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..1..0..0
..0..0..1..1. .0..0..1..0. .1..1..0..0. .0..0..0..0. .1..0..0..0
		

Crossrefs

Column 2 is A105309(n+1).
Row 1 is A000930(n+1).
Row 2 is A089977(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4)
k=3: a(n) = a(n-1) +4*a(n-2) +2*a(n-3) -4*a(n-4)
k=4: a(n) = a(n-1) +6*a(n-2) +4*a(n-3) -3*a(n-4) -a(n-5) -2*a(n-6) -a(n-7)
k=5: [order 20]
k=6: [order 25]
k=7: [order 55]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3)
n=2: a(n) = a(n-1) +4*a(n-3)
n=3: a(n) = a(n-1) +a(n-2) +8*a(n-3) +a(n-4) -2*a(n-6)
n=4: [order 8]
n=5: [order 21]
n=6: [order 31]
n=7: [order 69]