cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297438 A divisor analog of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 29, 56, 134, 283, 672, 1496, 3568, 8214, 19678, 46364, 111766, 267467, 648941, 1570540, 3833777, 9357181, 22967808, 56430230, 139193762, 343825265, 851777363, 2113382992, 5255584309, 13089273904
Offset: 1

Views

Author

Mats Granvik, Dec 30 2017

Keywords

Comments

By changing the upper summation index in the recurrence from k-1 to n-1 we get the Motzkin numbers A001006.
That is, by changing
Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k)
into
Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k),
we get the Motzkin numbers.
With this change of upper summation index, a(n) is to A001006 as A239605 is to A000108.

Crossrefs

Programs

  • Mathematica
    Clear[t, n, k, i, nn, x];
    coeff = {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    mp[m_, e_] :=
    If[e == 0, IdentityMatrix@Length@m, MatrixPower[m, e]]; nn =
    Length[coeff]; cc = Range[nn]*0 + 1; Monitor[
    Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]];
      t[n_, k_] :=
       t[n, k] =
        If[n >= k,
         Sum[t[n - i, k - 1], {i, 1, k - 1}] -
          Sum[t[n - i, k], {i, 1, k - 1}], 0];
      A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
      A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]];
      cc = Total[
        Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1, nn}]];, {i, 1,
       nn}], i]; cc