cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297475 Numbers n such that phi(x) = n for more than one value of x, and the smallest such x divides the largest.

Original entry on oeis.org

1, 2, 8, 10, 22, 28, 30, 44, 46, 52, 54, 56, 58, 66, 70, 78, 82, 92, 102, 104, 106, 110, 116, 126, 128, 130, 136, 138, 140, 148, 150, 164, 166, 172, 178, 190, 196, 198, 204, 210, 212, 222, 226, 228, 238, 250, 260, 262, 268, 270, 282, 292, 294, 296, 306, 310, 316, 330, 332, 342, 344, 346, 356, 358, 366, 368, 372
Offset: 1

Views

Author

Torlach Rush, Dec 30 2017

Keywords

Comments

The larger endpoint is always twice the value of the smaller endpoint.
Conjecture 1: The number of solutions, excluding endpoints is always 0, or an odd number. (known to n = 2 * 10^5)
Conjecture 2: If both endpoints are divisible by 5, then the number of solutions (excluding terms of A007366) is of the form 4k + 1. (known to n = 2 * 10^5)
A007366 is contained in this sequence and the number of solutions, excluding endpoints is always 0.
Terms of this sequence are totients with a single odd totient inverse.

Examples

			2 is in the sequence because {phi^-1(2)} = {3,4,6}, and 2 = 6 / 3.
8 is in the sequence because {phi^-1(8)} = {15,...,30}, and 2 = 30 / 15.
10 is in the sequence because {phi^-1(10)} = {11,22}, and 2 = 22 / 11.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 67}, Take[#, nn] &@ Keys@ Select[KeySort@ PositionIndex@ Array[EulerPhi, nn^2], IntegerQ[#2/#1] & @@ {First@ #, Last@ #} &]] (* Michael De Vlieger, Dec 31 2017 *)
  • PARI
    isok(n) = my(vx = invphi(n)); (#vx > 1) && ((vecmax(vx) % vecmin(vx)) == 0); \\ Michel Marcus, Jul 18 2018

Formula

2 = max({phi^-1(n)}) / min({phi^-1(n)}).
0 = A006511(n) mod A002181(n).