A297544 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 2 or 3 neighboring 1s.
1, 1, 1, 1, 2, 1, 1, 11, 4, 1, 1, 24, 35, 7, 1, 1, 38, 93, 88, 14, 1, 1, 105, 197, 275, 461, 31, 1, 1, 381, 905, 1233, 2205, 2050, 69, 1, 1, 1067, 4617, 10234, 12161, 13248, 8057, 155, 1, 1, 2676, 17190, 65363, 205888, 94647, 67215, 35640, 354, 1, 1, 7533, 60751, 355573
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..0..1..0. .1..1..0..0. .0..0..1..0. .0..0..1..0 ..1..1..1..0. .0..1..1..1. .0..1..1..1. .0..1..1..1. .1..1..1..1 ..0..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..1..0. .0..1..0..0 ..0..0..1..1. .1..1..1..0. .0..0..1..1. .0..1..1..0. .0..0..1..1 ..0..0..1..1. .0..1..0..0. .0..1..1..1. .0..1..1..1. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Column 2 is A202973.
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) -a(n-5)
k=3: [order 14]
k=4: [order 22]
k=5: [order 54]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 3*a(n-1) -2*a(n-2) +5*a(n-3) +6*a(n-4) -16*a(n-5) -12*a(n-6)
n=3: [order 17]
n=4: [order 40]
Comments