A297574 Least integer m > n such that 2^m == 2^n (mod m*n).
2, 6, 15, 6, 65, 8, 16, 12, 63, 30, 31, 16, 85, 26, 39, 20, 65, 72, 73, 24, 57, 32, 56, 32, 1025, 170, 513, 40, 85, 42, 91, 40, 93, 130, 155, 144, 73, 56, 111, 48, 341, 48, 127, 64, 585, 112, 2048, 60, 2107, 550, 195, 64, 157, 1026, 155, 80, 219, 86, 233, 64, 1261, 82, 171, 73, 257, 96, 595, 140, 201, 130, 281, 126
Offset: 1
Keywords
Examples
a(1) = 2 since 2^2 - 2^1 = 2*1. a(2) = 6 since 2^6 - 2^2 = 60 = 5*(2*6). a(3) = 15 since 2^15 - 2^3 = 32760 = 728*(3*15). a(4) = 6 since 2^6 - 2^4 = 48 = 2*(4*6).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Zhi-Wei Sun)
Programs
-
Mathematica
Do[m=n+1; Label[aa]; If[Mod[2^m-2^n, m*n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 80}]
-
PARI
a(n) = my(m=n+1); while(1, if(Mod(2, m*n)^m==Mod(2, m*n)^n, return(m)); m++) \\ Felix Fröhlich, Jan 01 2018
-
Python
def A297574(n): m = n+1 mn = m*n while pow(2,m,mn) != pow(2,n,mn): m += 1 mn += n return m # Chai Wah Wu, Jan 04 2018
Comments